[1]
Y.J. Huang, B.H. Hu, I. Pinwill, W. Zhou and D.M.R. Taplin, Effects of Process Setting on the Porosity Levels of AM60B Magnesium Die Castings, Materials and Manufacturing Processes, 15 (2000) 97-105.
DOI: 10.1080/10426910008912975
Google Scholar
[2]
Y.B. Li and W. Zhou, Numerical Simulation of Filling Process in Die Casting, Materials Technology, 18 (2003) 36-41.
Google Scholar
[3]
W. Zhou and Z.M. Xu, Casting of SiC Reinforced Metal Matrix Composites, Journal of Materials Processing and Technology, 63 (1997) 358-363.
DOI: 10.1016/s0924-0136(96)02647-7
Google Scholar
[4]
W. Zhou, T.Z. Long and C.K. Mark, Hot Cracking in Tungsten Inert Gas Welding of Magnesium Alloy AZ91D, Materials Science and Technology, 23 (2007) 1294-1299.
DOI: 10.1179/174328407x213026
Google Scholar
[5]
J.Z. Hou, W. Zhou and N. Zhao, Effect of Cutting Parameters on Ignition of AM50A Mg Alloy during Face Milling, Materials and Manufacturing Processes, 25 (2010) 1048-1051.
DOI: 10.1080/10426910903496870
Google Scholar
[6]
J.Z. Hou, W. Zhou and N. Zhao, Methods for Prevention of Ignition during Machining of Magnesium Alloys, Key Engineering Materials, 447-448 (2010) 150-154.
DOI: 10.4028/www.scientific.net/kem.447-448.150
Google Scholar
[7]
N.N. Aung and W. Zhou, Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of AZ91D Magnesium Alloy, Journal of Applied Electrochemistry, 32 (2002) 1397-1401.
Google Scholar
[8]
W. Zhou, T. Shen and N.N. Aung, Effect of Heat Treatment on Corrosion Behaviour of Magnesium Alloy AZ91D in Simulated Body Fluid, Corrosion Science, 52 (2010) 1035-1041.
DOI: 10.1016/j.corsci.2009.11.030
Google Scholar
[9]
Y.C. Guan and W. Zhou, Calorimetric Analysis of AZ91D Magnesium Alloy, Materials Letters, 62 (2008) 4494-4496.
DOI: 10.1016/j.matlet.2008.08.025
Google Scholar
[10]
R. Ambat and W. Zhou, Electroless Nickel-plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters, Surface and Coating Technology, 179 (2004) 124-134.
DOI: 10.1016/s0257-8972(03)00866-1
Google Scholar
[11]
L.F. Cai, C.K. Mark and W. Zhou, Laser Cladding of Magnesium Alloy AZ91D with Silicon Carbide, Surface Review and Letters, 16 (2009) 215-221.
DOI: 10.1142/s0218625x09012512
Google Scholar
[12]
Y.C. Guan, W. Zhou, Z.L. Li and H.Y. Zheng, Study on the Solidification Microstructure in AZ91D Mg Alloy after Laser Surface Melting, Applied Surface Science, 255 (2009) 8235-8238.
DOI: 10.1016/j.apsusc.2009.05.055
Google Scholar
[13]
Y.C. Guan, W. Zhou and H.Y. Zheng, Effect of Laser Surface Melting on Corrosion Behaviour of AZ91D Mg Alloy in Simulated-modified Body Fluid, Journal of Applied Electrochemistry, 39 (2009) 1457-1464.
DOI: 10.1007/s10800-009-9825-2
Google Scholar
[14]
Y.C. Guan, W. Zhou and H.Y. Zheng, Effect of Nd: YAG Laser Melting on Surface Energy of AZ91D Mg Alloy, Surface Review and Letters, 16 (2009) 801-806.
DOI: 10.1142/s0218625x09013347
Google Scholar
[15]
Y.C. Guan, W. Zhou, H.Y. Zheng and Z.L. Li, Solidification Microstructure of AZ91D Mg Alloy after Laser Surface Melting, Applied Physics A: Materials Science & Processing, 101 (2010) 339-344.
DOI: 10.1007/s00339-010-5880-0
Google Scholar
[16]
Y.C. Guan, W. Zhou, H.Y. Zheng and Z.L. Li, Surface Modification of AZ91D Magnesium Alloy using Millisecond, Nanosecond and Femtosecond Lasers, Key Engineering Materials, 447-448 (2010) 695-699.
DOI: 10.4028/www.scientific.net/kem.447-448.695
Google Scholar
[17]
D.W. Shu, W. Zhou and G.W. Ma, Tensile Mechanical Properties of AM50A Alloy by Hopkinson Bar, Key Engineering Materials, 340-341 (2007) 247-254.
DOI: 10.4028/www.scientific.net/kem.340-341.247
Google Scholar
[18]
N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corrosion Science, 52 (2010) 589-594.
DOI: 10.1016/j.corsci.2009.10.018
Google Scholar
[19]
Y. Cai, D. Taplin, M.J. Tan and W. Zhou, Nucleation Phenomenon in SiC Particulate Reinforced Magnesium Composite, Scripta Materialia, 41 (1999) 967-971.
DOI: 10.1016/s1359-6462(99)00247-x
Google Scholar
[20]
N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corrosion Science, 52 (2010) 1551-1553.
DOI: 10.1016/j.corsci.2010.02.025
Google Scholar
[21]
R. Ambat, N.N. Aung and W. Zhou, Evaluation of Microstructural Effects on Corrosion Behaviour of AZ91D Magnesium Alloy, Corrosion Science, 42 (2000) 1433-1455.
DOI: 10.1016/s0010-938x(99)00143-2
Google Scholar
[22]
R. Ambat, N.N. Aung and W. Zhou, Studies on the Influence of Chloride Ion and pH on the Corrosion and Electrochemical Behaviour of AZ91D Magnesium Alloy, Journal of Applied Electrochemistry, 30 (2000) 865-874.
Google Scholar
[23]
W. Zhou, N.N. Aung and Y.S. Sun, Effect of Antimony, Bismuth and Calcium Addition on Corrosion and Electrochemical Behaviour of AZ91 Magnesium Alloy, Corrosion Science, 51 (2009) 403-408.
DOI: 10.1016/j.corsci.2008.11.006
Google Scholar
[24]
N.N. Aung, W. Zhou and L.E.N. Lim, Wear Behaviour of AZ91D Alloy at Low Sliding Speeds, Wear, 265 (2008) 780-786.
DOI: 10.1016/j.wear.2008.01.012
Google Scholar
[25]
A. Bag and W. Zhou, Tensile and Fatigue Behaviour of AZ91D Magnesium Alloy, Journal of Materials Science Letters, 21 (2001) 457-459.
Google Scholar