Mechanics of Growing Solids and Phase Transitions

Article Preview

Abstract:

Phase transitions can be usually observed in nature and technology which effectively utilize certain types of these transitions. An approach to modeling phase transition processes on the basis of the mathematical theory of growing solids is developed. Liquid-solid and gas-solid phase transitions are under consideration. Main attention is paid to the processes of solid phase growth and deformation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

89-93

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Noll Materially uniform simple bodies with inhomogeneities, Arch. Rat. Mech. Anal.  2, pp.1-32. 1967.

DOI: 10.1007/bf00276433

Google Scholar

[2] N. Kh. Aruyunyan, A. V. Manzhirov, and V .E. Naumov, Contact Problems in Mechanics of Growing Solids [in Russian], Nauka Publ., Moscow, 1991.

Google Scholar

[3] N. Kh. Aruyunyan and A. V. Manzhirov, Contact Problems in the Theory of Creep [in Russian], NAN RA Publ., Erevan, 1999.

Google Scholar

[4] A. V. Manzhirov Mathematical theory of accreted solids and its applications, in M.D. Finn and T. Mattner, eds. XXII International Congress of Theoretical and Applied Mechanics. Abstract Book, p.271, Adelaide, 2008.

Google Scholar

[5] A. V. Manzhirov and S. A. Lychev, Mathematical modeling of growth processes in nature and engineering: A variational approach. Journal of Physics: Conference Series 181(1): 012018. 2009.

DOI: 10.1088/1742-6596/181/1/012018

Google Scholar

[6] A. V. Manzhirov and S. A. Lychev, Residual stresses in growing bodies, in A. V. Manzhirov, N. K. Gupta, D. A. Indeitsev, eds. Topical Problems in Solid and Fluid Mechanics, pp.66-79, Elite Pub. House, New Delhi, 2011.

Google Scholar

[7] S. A. Lychev, T. N. Lycheva and A. V. Manzhirov, Unsteady vibration of a growing circular plate. Mech. Solids 46(2), pp.325-333. 2011.

DOI: 10.3103/s002565441102021x

Google Scholar

[8] A. V. Manzhirov and S. A. Lychev, Mathematical theory of growing solids. Finite deformations. Doklady Physics. 57(4), pp.160-163. 2012.

DOI: 10.1134/s1028335812040015

Google Scholar