29Si NMR Characterization of Silica Tetrahedron in the Silica Fume Simulate Hydration

Article Preview

Abstract:

As the major structure of silica fume, the change of silica tetrahedron in the pozzolanic reaction during the hydration has not been revealed clearly in previous studies. In this study, 29Si solid-state MAS NMR was used to characterize the silica tetrahedron change of the silica fume in saturated alkali solution with 0.9, 1.2, 1.5 and 1.8 four different calcium/silica ratios. The amorphous Q4 silica tetrahedron structure in silica fume changed into Q1 silica tetrahedron at 1 day. Q2 silica tetrahedron formed from Q1 silica tetrahedron within 3 days. Q1 and Q2 silica tetrahedron reached a balance until silica fume completed pozzolanic reaction and the Q4 silica tetrahedron exhausted. The coexistence of Q1 and Q2 silica tetrahedron benefited the physical properties increase of cementitious system. 29Si solid-state MAS NMR results proved that the chain length of silica tetrahedron in C-S-H shortened in the silica fume hydration while the C/S ratio increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-4

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Siddique and N. Chahal: Resources, Conserv. Recycl. Vol. 55 (2011), p.739.

Google Scholar

[2] H.W. Song, S.W. Pack and S.H. Nam: Constr. Build. Mater. Vol. 24 (2010), p.315.

Google Scholar

[3] N. Neithalath, J. Persun and A. Hossain: Cem. Concr. Res. Vol. 39 (2009), p.473.

Google Scholar

[4] E.H. Kadri, R. Duval, S. Aggoun, et al.: ACI Mater. J. Vol. 106 (2009), p.107.

Google Scholar

[5] E. A. El-alfi, A. M. Radwan, H. Abu-el-naga: Ceramics-Silikaty. Vol. 55 (2011), p.147.

Google Scholar

[6] J. Zelic, D. Rusic and R. Krstulovic: Cem. Concr. Res. Vol. 34(2004), p.2319.

Google Scholar

[7] R. Duval and E.H. Kadri: Cem. Concr. Res. Vol. 28 (1998), p.533.

Google Scholar

[8] Y.J. Ji and H.C. Jone: Cem. Concr. Res.Vol. 33 (2003), p.1543.

Google Scholar

[9] G.A. Rao: Cem. Concr. Res. Vol. 33 (2003), p.1765.

Google Scholar

[10] J. Zelic, D. Rusic and R. Krstulovic: Cem. Concr. Res.Vol. 34 (2004), p.2319.

Google Scholar

[11] G.A. Rao: Cem. Concr. Res. Vol. 31 (2001), p.1141.

Google Scholar

[12] X. Wang, H. Lee, S.W. Shin, et al.: Magazine Concr. Res. Vol. 62 (2010), p.637.

Google Scholar

[13] E.A. Kishar, D.A: Ahmed and M.R. Mohammed: Adv. Cem. Res. Vol. 22 (2010), p.143.

Google Scholar

[14] E.H. Kadri and R. Duval: Constr. Build. Mater. Vol. 23 (2009), p.3388.

Google Scholar

[15] G.A. Rao: Cem. Concr. Res. Vol. 33 (2003), p.1765.

Google Scholar

[16] F. Brunet, P. Bertani, T. Charpentier, et al.: J. Phys. Chem. B Vol. 108 (2004), p.15494.

Google Scholar

[17] L.N. Lv, X.G. Zhao, Y.J. He, et al.: Effect of C/S ratio on morphology and structure of calcium silicate hydrate. Presented at 1st Conf. Cement Branch of Chin. Ceram. Soc. (Jiaozuo, China, 2009).

Google Scholar

[18] X.J. Wang, W.W. Zhu, H.Wang: J. Wuhan Univ. Technol. – Mater. Sci. Ed. Vol. 26 (2011), p.972.

Google Scholar

[19] M.D. Andersen, H.J. Jakobsen and J. Skibsted: Inorg. Chem. Vol. 42 (2003), p.2280.

Google Scholar