Research on Modification of Steady State Migration Test for Cementitious Materials

Article Preview

Abstract:

Steady state migration test is the main method for determining chloride diffusivity of cementitious materials. In this paper a modified steady state migration test was introduced. The conductivity of anolyte is tested to calculate chloride concentration therefore the time consuming work for determining chloride concentration directly is avoided and the steady state migration test is simplified. A series of concrete mixes with different water cement ratio and different mineral admixtures were tested with the modified steady state migration test. An equation for calculation of chloride concentration using conductivity of anolyte is given. Experimental results show that the modified steady state migration test is effective and convenient. Probable experimental errors caused by determining chloride concentration directly are averted by conductivity determining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-171

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Hall: Mag. Concr. Res. Vol. 41(1989), p.51.

Google Scholar

[2] D. Whiting: Public Roads Vol. 45(1981), p.101.

Google Scholar

[3] American Society for Testing and Materials: ASTM C 1202.

Google Scholar

[4] American Association of State Highway and Transportation Officials: AASHTO T 277.

Google Scholar

[5] P.F. McGrath and R.D. Hooton: Cem. Concr. Res. Vol. 29(1999), p.1239.

Google Scholar

[6] P. Ghosh, A. Hammond and P.J. Tikalsky: ACI Mater. J. Vol. 108(2011), p.88.

Google Scholar

[7] C. Andrade: Cem. Concr. Res. Vol. 23(1993), p.724.

Google Scholar

[8] T. Zhang and O.E. Gjorv: Cem. Concr. Res. Vol. 24(1994), p.1534.

Google Scholar

[9] Nordic Innovation Centre: NT Build 355.

Google Scholar

[10] M. Castellote, C. Andrade and C. Alonso: Cem. Concr. Res. Vol. 31(2001), p.1411.

Google Scholar

[11] P. Yan, J. Yang, X. Zhou et al.: STRUCTURAL FAULTS & REPAIR-2010(Edinburgh, Scotland, UK, 2010)

Google Scholar

[12] P.A.M. Basheer, R.J. Andrews, D.J. Robinson et al.: NDT&E Int. Vol. 38(2005), p.219.

Google Scholar

[13] J. Yang and P. Yan: J. Adv. Concr. Technol.Vol. 7(2009), p.385.

Google Scholar

[14] L. Tang and L. Nilsson: ACI Mater. J. Vol. 89(1992), p.49.

Google Scholar

[15] Nordic Innovation Centre: NT Build 492.

Google Scholar

[16] L. Tong and O.E. Gjørv: Cem. Concr. Res. Vol.31(2001), p.973.

Google Scholar

[17] P.E. Streicher and M.G. Alexander: Cem. Concr. Res. Vol. 25(1995), p.1284.

Google Scholar

[18] X. Lu: Cem. Concr. Res. Vol. 27(1997), p.293.

Google Scholar

[19] T. Zhao, Z. Zhou, J. Zhu et al.: Cem. Concr. Res. Vol. 28(1998), p.7.

Google Scholar

[20] J. Yang, F.H. Wittmann and T. Zhao: Restor. Build. Monum. Vol. 16(2010), p.57.

Google Scholar

[21] M. Castellote, C. Andrade and C. Alonso: Mater. Struct. Vol. 32(1999), p.180.

Google Scholar

[22] K.J. Laidler, J.H. Meiser and B.C. Sanctuary: Physical Chemistry(Benjamin/Cummings, California, USA, 1982), p.280.

Google Scholar

[23] G. A. Julio-Betancourt and R.D. Hooton: Cem. Concr. Res. Vol. 34(2004), p.1007.

Google Scholar