Finite Element Model Development Applied to Portuguese Granites for Contact Analysis of Two Dowel Fixing Conditions Used in Cladding

Article Preview

Abstract:

The present work sets out a finite element model for contact analysis of two different dowel fixing conditions for granite cladding. To be used in building facades as cladding materials and ornamental stones, Portuguese granites Cinzento de Alpalhão (SPI) and Amarelo de Vila Real (AVR) are considered with dowel-hole anchorage systems. FEM for contact analysis was developed (with ANSYS software) for two different dowel fixing conditions: one with regular plastic cap and the other with a fast curing mortar. Differences on strain fields between both granites with the different dowel fixing conditions were studied. Contact analysis for SPI and AVR materials show that the different dowel fixing conditions originate different strain fields. FEM results explain how different contact conditions influence the overall system stiffness (stone panel – fixing element – dowel) obtained in the dowel-hole anchorage strength tests for both granites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-266

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Marinosci, P.A. Strachan, G.L. Morini: Empirical validation and modeling of a naturally ventilated rainscreen facade building, Energy and Buildings, Vol. 43 (2011), Issue 4, pp.853-863.

DOI: 10.1016/j.enbuild.2010.12.005

Google Scholar

[2] M. Mora Perez, G. Lopez Patino, M.A. Bengochea Escribano, P.A. López Jiménez: Quantification of ventilated facade efficiency by using computational fluid mechanics techniques, Boletin de la sociedad Espanola de cerámica y vidrio, Vol. 50 (2011).

DOI: 10.3989/cyv.142011

Google Scholar

[3] M. Ciampi, F. Leccese, G. Tuoni: Ventilated facades energy performance in summer cooling of buildings, Solar Energy, Vol. 75 (2003), Issue 6, pp.491-502.

DOI: 10.1016/j.solener.2003.09.010

Google Scholar

[4] A. Jain, A.Y. Yi, X. Xie and R Sooryakumar: Finite element modelling of stress relaxation in glass lens moulding using measured, temperature-dependent elastic modulus and viscosity data of glass, Modelling and Simulation in Mat. Science and Eng. Vol. 14, Issue 3 (2006).

DOI: 10.1088/0965-0393/14/3/009

Google Scholar

[5] N. Zhang, C. C. Fu, H. Chec: Experiment and numerical modeling of prestressed concrete curved slab with spatial unbonded tendons, Eng. Structures, Vol. 33 (2011), p.747–756.

DOI: 10.1016/j.engstruct.2010.11.029

Google Scholar

[6] Q. Dai: Three-Dimensional Micromechanical Finite-Element Network Model for Elastic Damage Behavior of Idealized Stone-Based Composite Materials, Journal of Eng. Mec., Vol. 137 (2011), Issue. 6, pp.410-421.

DOI: 10.1061/(asce)em.1943-7889.0000239

Google Scholar

[7] C. Jiang, G. Liu, D. Zhang and X. Xu: FEM Analysis of Grinding Damage Mechanisms for Ceramics Materials, Materials Science Forum, Vol. 532 – 533 (2006), pp.432-435.

DOI: 10.4028/www.scientific.net/msf.532-533.432

Google Scholar

[8] R.C. Yu, G. Ruiz, A. Pandolfi: Numerical investigation on the dynamic behavior of advanced ceramics. Eng Fract Mech, Vol. 71 (2004), p.897–911.

DOI: 10.1016/s0013-7944(03)00016-x

Google Scholar

[9] A.F.M. Azevedo, in: Método dos Elementos Finitos, 1ª ed. Faculdade de Engenharia da Universidade do Porto, Portugal, April (2003).

Google Scholar

[10] P.J. Fanning, T.E. Boothby: Three Dimensional Modelling and full scale testing of stone arch bridge, Computers and Structures Vol. 79 (2001), pp.2645-2662.

DOI: 10.1016/s0045-7949(01)00109-2

Google Scholar

[11] F. Mollica, L. Ambrosio: The Finite Element Method for the Design of Biomedical Devices, Biomaterials in Hand Surgery, (2009), pp.31-45.

DOI: 10.1007/978-88-470-1195-3_3

Google Scholar

[12] O.K. Mahabadi, B.E. Cottrell, G. Grasselli: An Example of Realistic Modelling of Rock Dynamics Problems: FEM/DEM Simulation of Dynamic Brazilian Test on Barre Granite, Rock Mech. and Rock Eng., Vol. 43 (2010), p.707–716.

DOI: 10.1007/s00603-010-0092-7

Google Scholar

[13] W.C. Zhu, C.A. Tang: Numerical simulation of Brazilian disk rock failure under static and dynamic loading, Int. J. of Rock Mech. & Min. Sci., Vol. 43 (2006), p.236–252.

DOI: 10.1016/j.ijrmms.2005.06.008

Google Scholar

[14] R.S. Camposinhos: Revestimentos em Pedra Natural com Fixação Mecânica: Dimensionamento e Projecto. 1ª ed., Lisboa: Edições Sílabo, (2009), pp.32-38.

Google Scholar

[15] L. Jacobsson, M. Flansbjer, B. Schouenborg, B. Grelk, A. Smits: Expert System for Dimensioning of Façade Cladding, Global Stone Congress, Alicante, Spain (2010).

Google Scholar

[16] R.S. Camposinhos, R.P.A. Camposinhos: Dimension stone cladding design with dowel anchorage. Proceedings of the ICE - Construction Materials, Vol. 162 (2009), pp.95-104.

DOI: 10.1680/coma.2009.162.3.95

Google Scholar

[17] R.S. Camposinhos, P.M. Amaral, L.G. Rosa, V. Pires: Dimension stone cladding design – Dowel Anchorage Design, paper presented at Int. Congress of Dimension Stones (2008), Carrara, Italy, 29th – 31st May, pp.203-207.

Google Scholar

[18] ANSYS Structural Analysis Guide, ANSYS Release 9. 0, ANSYS Inc., Nov. (2004).

Google Scholar

[19] V. Pires, P.M. Amaral, L.G. Rosa, R.S. Camposinhos: Slate flexural and anchorage strength considerations in cladding design, Construction and Building Materials, Vol. 25 (2011), Issue 10, pp.3966-3971.

DOI: 10.1016/j.conbuildmat.2011.04.029

Google Scholar

[20] HALFEN Technical Product Information. Natural stone support systems – facade. FS 10. 1-E (2011).

Google Scholar

[21] R.S. Hamilton, in: Air Pollution and Damage To Building Stone, Chemical Analysis of Granites From Quarries and Monument, Environmental protection and conservation of the European cultural heritage – proceedings of the EC workshop, Edited by European Commission, Santiago de Compostela, Spain, 28-30 Nov. (1996).

Google Scholar

[22] M.H.B.O. Frascá, , J.K. Yamamoto, in: Ageing tests for dimension stone - experimental studies of granitic rocks from Brazil, paper present at 10th Congress of the International Association for Engineering Geology and the Environment – Engineering geology for tomorrow's cities, Nothingam, UK, 6th – 10th September (2006).

Google Scholar

[23] M. Vargas, C. Maqueda, , M.L. Franquelo, J. García Talegón, J.L.P. Rodrígues, in: Chemical Analysis of Granites From Quarries and Monument, Environmental protection and conservation of the European cultural heritage – proceedings of the EC workshop, Edited by European Commission Santiago de Compostela, Spain, 28-30 Nov. (1996).

Google Scholar

[24] A. Casal Moura, V. Pires: Selecção de rochas ornamentais – Casos de estudo, Arquitectura e Vida, Ed. Loja da Imagem, Issue 88 (2007).

Google Scholar

[25] V. Pires, L.G. Rosa, V. Infante, P.M. Amaral, A. Pacheco: Effect of dowel Fixing Conditions on Anchorage Rupture Loads and Rupture Angles of two Portuguese Granites, XIII Portuguese Conference on Fracture, (2012) Coimbra, Portugal.

DOI: 10.4028/www.scientific.net/kem.548.255

Google Scholar

[26] A. Casal Moura, in: Granitos e Rochas Similares de Portugal, Edição Instituto Geológico e Mineiro, Marca - Artes Gráficas, Porto (2000).

Google Scholar

[27] J.A.R.S. Simão, in: Rochas ígneas como pedra ornamental – Causas, condicionantes e mecanismos de alteração Implicações tecnológicas, PhD thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Terra, Lisboa (2003).

DOI: 10.21011/apn.2017.1304

Google Scholar

[28] A. Moreira: Reconhecimento geológico, estrutural, petrográfico e geoquímico dos granitos de Alpalhão, Gáfete e Quareleiros (Alto Alentejo), in: Estudos, Notas e Trabalhos, Instituto Geológico e Mineiro (1994), Issue 36, pp.103-117.

Google Scholar

[29] ASTM C 1354-96, Standard Test Method for Strength of Individual Stone Anchorages in Dimension Stone.

Google Scholar

[30] Pattex TQ500 – Henkel – General Catalogue, (2009/2010).

Google Scholar

[31] P.M. Amaral, L.G. Rosa, J.C. Fernandes: Fracture toughness of different types of granite. International Journal of Rock Mechanics and Mining Science, Vol. 36 (1999), pp.839-842.

DOI: 10.1016/s0148-9062(99)00041-8

Google Scholar

[32] 1P.M. Amaral, J.C. Fernandes, L.G. Rosa: Weibull statistical analysis of granite bending strength. Rock Mechanics and Rock Engineering, Vol. 41, Issue 6 (2008), pp.917-928.

DOI: 10.1007/s00603-007-0154-7

Google Scholar