Modelling Kinetics of Phase Transformation for the Indirect Hot Stamping Process

Article Preview

Abstract:

To configure the indirect hot stamping process, a finite-element-based prediction of the parts geometry and mechanical properties is required. In case of indirect hot stamping, inhomogeneous cooling schedules cause different phase transformation points and products. The volume expansion caused by phase transformation of fcc into bcc leads to transformation induced stresses that are important for the calculation of overall stresses in press hardened components. To calculate theses stresses correctly, it is necessary to study the kinetics of phase transformation in consideration of the cooling path of an indirect hot stamping process. Dilatometer tests are employed to obtain the kinetics of phase transformation is determined in dilatometer tests. These results are used to identify the parameters for the phase transformation models implemented in the material model *MAT_244 [ that is implemented in the finite-element-code LS-DYNA [. In this context the material model parameters are identified by using evolutionary optimization strategies. Based on the identified parameters the predictive quality of the implemented phase transformation models will be studied in order to improve their prediction accuracy for the indirect hot stamping process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-116

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Livermore Software Technology Corporation: LS-DYNA KEYWORD USER'S MANUAL, VOLUME II, Material Models, Version 971 / Release 6. Livermore Software Technology Corporation, (2012)

Google Scholar

[2] Livermore Software Technology Corporation: LS-DYNA THEORY MANUAL, Version 2006. Livermore Software Technology Corporation, (2006)

Google Scholar

[3] Akerstroem, P.: Modelling and Simulation of Hot Stamping, Lulea University of Technology, Ph.D. Thesis, 2006.

Google Scholar

[4] Olle, P.: Numerische und experimentelle Untersuchungen zum Presshärten, Leibnitz Universität Hannover, Ph.D. Thesis, (2007)

Google Scholar

[5] George, R.; Bardelcik, A.; Worswick, M. J.: Hot Forming of a Lab-Scale B-Pillar with Tailored Properties – Experiment and Modelling. Edited by Oldenburg, M.; Steinhoff, K.; Prakash, B.: 3. International Conference on Hot Sheet Metal Forming of High-Performance Steel. Auerbach: Wissenschaftliche Scripten, 2011, pp.31-37

Google Scholar

[6] Naderi, M.: Hot Stamping of Ultra High Strength Steels, RWTH Aachen, Ph.D. Thesis, (2007)

Google Scholar

[7] Voestalpine Produktprospekt phs-ultraform: Presshärtender Stahl von voestalpine. http://www.voestalpine.com/stahl/de/site/downloads/product_brochures.ContentPar.6767.File.tmp/phs_Folder_deu_i.pdf (06.12.2011)

DOI: 10.11129/detail.9783955530396.120

Google Scholar

[8] BÄHR-Thermoanalyse GmbH: http://www.baehr-thermo.com/de/produkte/html/frame_produkte.html (27.08.2012)

Google Scholar

[9] Wirthl, E.; Pichler, A.; Angerer, R.; Stiaszny, P; Hauzenberger, K.; Titovets, Y; Hackl, M: Determination of the Volume Amount of Retained Austenite and Ferrite in Small Specimens by Magnetic Measurements. International Conference on TRIP-Aided High Strength Ferrous Alloys, Vol. 1., 2002, pp.61-64

Google Scholar

[10] DIN EN ISO 6507-1 (März 2006): Metallische Werkstoffe: Härteprüfung nach Vickers

Google Scholar

[11] Bargel, H.-J.; Schulze, J.: Werkstoffkunde. 10., bearbeitete Auflage. Springer-Verlag. Berlin/Heidelberg, (2008)

Google Scholar

[12] Koistinen, D. P.; Marburger, R. E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica 7 (1959) 59 – 60

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[13] Hougardy, H.: Werkstoffkunde Stahl, Bd. 1: Grundlagen. Düsseldorf: Springer-Verlag. Berlin/New York/Tokyo: Verlag Stahleisen, (1984)

DOI: 10.1002/crat.2170200212

Google Scholar

[14] Avrami, M.: Kinetics of Phase Change: General Theory. Journal of Chemical Physics Vol. 7 (1939) 1103 – 1112

Google Scholar

[15] Kirkaldy, J. S.; Venugopalan, D.: Prediction of microstructure and hardenability in low alloy steels. In: Marder, A. R.; Goldstein, J. I.: International Conference on Phase Transformations in Ferrous Alloys, 1983, pp.125-148

Google Scholar

[16] Livermore Software Technology Corporation: LS-DYNA KEYWORD USER'S MANUAL, VOLUME I, Version 971 / Release 6. Livermore Software Technology Corporation, (2012)

Google Scholar

[17] Hippchen, P.; Meinhardt, J.; Panico, T.; Grass, H.; Lipp, A.; Fleischer, M.: Simulation des Presshärtens und industrielle Anwendung im Automobilbau. Edited by Europäische Forschungsgesellschaft für Blechverarbeitung: Produktionssysteme und –methoden für den Leichtbau – Wegbereiter zur E-Mobilität. Hannover: Druckteam GmbH, 2011, pp.319-333

Google Scholar

[18] Engelmann, B.E.; Whirley, R.G.; Goudreau, G.L.: A Simple Shell Element Formulation for Large-Scale Elastoplastic Analysis. In: Analytical and Computational Models of Shells, Noor, A.K.; Belytschko, T.; Simo, J.C., Eds.: CED-Vol 3, ASME, New York, New York, (1989)

Google Scholar

[19] Heinle, I.; Application of Evolutionary Strategies to Industrial Forming Simulations for the Identification and Validation of Constitutive Laws. Universität Leiden, Ph.D. Thesis, (2012)

Google Scholar

[20] Harrington, J.: The desirability function. Industrial quality control: Journal of the American Society of Quality C, 1965, pp.494-498

Google Scholar

[21] Lee, Seok-Jae; Pavlina, E. J.; Van Tyne, C. J.: Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Materials Science and Engineering A527 (2010) 3186 – 3194

DOI: 10.1016/j.msea.2010.01.081

Google Scholar

[22] Li, V.; Niebuhr, D.; Meekisho, L.; Atteridge, D.: A Computational Model for the Prediction of Steel Hardenability. Metallurgical and Materials Transaction B, 1998, pp.661-672

DOI: 10.1007/s11663-998-0101-3

Google Scholar

[23] Hippchen, P.; Merklein, M.; Lipp, A.; Fleischer, M.; Grass, H.; Craighero, P.: Untersuchung und Modellierung des Gefügeumwandlungsverhaltens für das indirekte Presshärten unter Serienprozessbedingungen. Edited by Merklein, M.: 7. Erlanger Workshop Warmblechumformung. Bamberg: Meisenbach-Verlag, 2012, pp.133-151

Google Scholar