A Novel Process for the Manufacture of Extended Laminar Flow Lipskins

Article Preview

Abstract:

To reduce drag and improve efficiency, the next generation of aircraft will increasingly utilise laminar flow technologies. Of particular interest is the use of natural laminar flow in nacelle designs. A key element to achieving natural laminar flow is the elimination of joints on the external surface of the nacelle through the rearward extension of the lipskin trailing edge. Current processing methods are limited in their ability to produce these extended lipskins while meeting production rates, cost targets and the requirements of the natural laminar flow designs. A novel process for the production of extended natural laminar flow lipskins is presented along with a series of pre-production trials. The efficacy of the process is clearly demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

April 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Young: Journal of Aerospace Engineering, published online (2012)

Google Scholar

[2] R. D. Joslin: Annu. Rev. Fluid Mech., Vol. 30, (1998) p.1–29

Google Scholar

[3] D. M. Bushnell: Journal of Aerospace Engineering, Vol. 217, No. 1, pp.1-18

Google Scholar

[4] R. Chilukuri: U.S. Patent 6,354,538 Bl (2002)

Google Scholar

[5] M. Sanchez, A. K. Kundu, B. K. Hinds and S. Raghunathan: Int J Adv Manuf Technol, Vol. 14 (1998), pp.894-900

Google Scholar

[6] R. Curran, K. Kundu, S. Raghunathan and R. McFadden: Journal of Aerospace Engineering, Vol. 216 p.29 – 39

Google Scholar

[7] H. Riedel, K.-H. Horstmann, A. Ronzheimer and M. Sitzmann: Aerospace Science and Technology, Vol. 2, No. 1, (1998), pp.1-12

Google Scholar

[8] G. K. Faust and P. Mungur: In NASA, Langley Research Center, Research in Natural Laminar Flow and Laminar-Flow Control, Part 3 pp.891-907 (SEE N90-12539 04-02), (1987)

Google Scholar

[9] Y. Lin, S. Raghunathan, B. Raghunathan and S. McIlwain: Journal of Aerospace Engineering, Vol. 226 (2012), p.42 – 54.

Google Scholar

[10] J. R. Stewart: Patent Application No. WO 2012/071339 A1 (2012).

Google Scholar

[11] R. T. White, T. J. Liebig and J. K. Switzer: U.S. Patent 5,035,133 (1991).

Google Scholar

[12] L. Chevalier: U.S. Patent 6,866,223 B2 (2005).

Google Scholar

[13] P. Kulkarni and P. Shashikiran: U.S. Patent 7,334,447 B1 (2008).

Google Scholar

[14] J. R. Stewart: U.S. Patent US 7,340,933 B2 (2008)

Google Scholar

[15] D. G. Sanders, M. Ramulu and P. D. Edwards: Materialwissenschaft und Werkstofftechnik, Vol. 39, No. 4-5, (2008) pp.353-357.

Google Scholar

[16] R. G. Kendall and D. A. Burford: U.S. Patent 6,955,283 B2 (2005)

Google Scholar

[17] D. G. Sanders, D. W. Foutch, J. D. Will, L. Leon, G. L. Ramsey and G. A. Booker: U.S. Patent Application US2011/0256343 A1 (2011)

Google Scholar

[18] Information on http://www.flightglobal.com/news/articles/boeing-envisions-third-parallel-line-for-737-max-366763/, (Accessed on November 2012)

Google Scholar

[19] Information on http://www.aviationweek.com/Article.aspx?id=/article- xml/avd_05_25_2012_p03-01-461788.xml, (Accessed on November 2012)

Google Scholar

[20] A. G. Leacock, M. Ludlow, D. Brown and R. J. McMurray: European Patent 2 328 698 B1 (2009).

Google Scholar