Numerical Simulation of Welding Thin Titanium Sheets

Article Preview

Abstract:

Different titanium grades are used in aircraft construction because of titaniums unique properties. These materials are mostly joined by different welding methods. Electron beam welding technology is often used in the aircraft industry to join structural elements made of titanium alloys. The goal of the work is a numerical analysis of the electron beam welding process applied to joining thin titanium sheets. The analysis was performed using finite element method, FEM. Temperature distribution, size of heat affected zone (HAZ), depth and width of fusion zone were determined for the assumed heat source model. Thermo-mechanical (TMC) simulation of the electron beam welding process using FEM is presented in the paper. The joining of two sheets, one made of commercially pure titanium Grade 2 and the other made of titanium alloy Grade 5 (Ti6Al4V), is analysed in the work. For the sheet welding process distributions of temperature, effective stress, and sheet deformation were calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-414

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bylica, J. Sieniawski: Tytan i jego stopy (PWN, Warszawa, Poland 1985 in Polish).

Google Scholar

[2] J. Adamus: Arch. Metall. Mater. Vol. 54/3 (2009), p.705.

Google Scholar

[3] J. Adamus, P. Lacki, W. Więckowski: Arch. Metall. Mater. Vol. 56 Issue 2 (2011), p.431.

Google Scholar

[4] J. Adamus, P. Lacki: Comp. Mater. Sci. Vol. 50 (2011), p.1305.

Google Scholar

[5] V. Ciubotariu, G. Brabie: Arch. Civ. Mech. Eng. Vol. 11, Issue 4 (2011), p.811.

Google Scholar

[6] J. Rojek, M. Hyrcza-Michalska, A. Bokota, W. Piekarska: Arch. Civ. Mech. Eng. Vol. 12, Issue 2 (2012), p.156.

Google Scholar

[7] S.-C. Wu, K.-H. Tseng, H.-C. Wen, M.-J. Wu, C.-P. Chou, Appl. Surf. Sci., Vol. 264 (2013), pp.45-51

Google Scholar

[8] H. Schultz: Electron beam welding, Woodhead Publishing, Abington, 1994.

Google Scholar

[9] S. Wang, X. Wu, Mater. Design, Vol. 36 (2012), p.663–670

Google Scholar

[10] W. Piekarska, M. Kubiak, A. Bokota: Arch. Metall. Mater., Vol. 56 Issue 2, (2011), p.409

Google Scholar

[11] W. Piekarska, M. Kubiak: Int. J. Heat. Mass. Tran., Vol. 54 Issue 23-24, (2011) p.4966

Google Scholar

[12] W. Piekarska, M. Kubiak, J. Therm. Anal. Calorim., Vol. 110 Issue 1, (2012) p.159

Google Scholar

[13] P. Ferro, A. Zambon, F. Bonollo: Mater. Sci. Eng. A, Vol. 392 (2005) , p.94.

Google Scholar

[14] P. Lacki, K. Adamus, K. Wojsyk, M. Zawadzki: Key Eng. Mat. Vol. 473 (2011) p.540.

Google Scholar

[15] P. Lacki, K. Adamus: Comput. Struct.Vol. 89 (2011), p.977.

Google Scholar

[16] P. Lacki, K. Adamus, K. Wojsyk, M. Zawadzki, Z. Nitkiewicz: Arch. Metall. Mater. Vol. 56 Issue 2 (2011), p.455.

Google Scholar

[17] J. Rońda, A. Siwek: Arch. Civ. Mech. Eng. Vol. 11, Issue 3 (2011), p.739.

Google Scholar

[18] O.C. Zienkiewicz: Metoda Elementów Skończonych (Arkady, Warszawa 1972 in Polish).

Google Scholar

[19] K.J. Bathe: Finite Element Procedures (Prentice-Hall Inc., New Jersey, 1996).

Google Scholar

[20] T. Pyttel: Finite Element Course (ESIGmbH, Eschborn, 2002).

Google Scholar