Finite Difference Approximations of Elasto-Plastic Bending Problems: Layered Approach and Error Estimates

Article Preview

Abstract:

The finite difference method is applied to derive approximate solutions for the elasto-plastic bending of Euler-Bernoulli beam problems. The investigations are restricted to a simple exemplary configuration, i.e. a straight cantilevered beam with constant rectangular cross-section and linear-elastic/ideal-plastic material properties, loaded by a constant distributed load. Only finite difference approximations of second-order accuracy are considered and special emphasis is given to the influence of the load step, the number of layers, and the number of nodes. Based on comparisons with the analytical solution, clear recommendations can be given on the required parameters to obtain a certain accuracy in the numerical approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.E. Forsythe, W.R. Wasow: Finite‐Difference Methods for Partial Differential Equations (Wiley, New York 1960).

Google Scholar

[2] A.R. Mitchell, D.F. Griffiths: The Finite Difference Method in Partial Differential Equations (Wiley, New York 1980).

Google Scholar

[3] J. N. Reddy: An Introduction to the Finite Element Method (McGraw Hill, Singapore 2006).

Google Scholar

[4] A. Öchsner, M. Merkel: One-Dimensional Finite Elements (Springer-Verlag, Berlin 2013).

Google Scholar

[5] P.K. Banerjee: Boundary Element Methods in Engineering (McGraw‐Hill, London 1994).

Google Scholar

[6] L. Gaul, M. Kögl, M. Wagner: Boundary Element Methods for Engineers and Scientists (Springer-Verlag, Berlin 2003).

DOI: 10.1007/978-3-662-05136-8

Google Scholar

[7] F. Xi, F. Liu, Q.M. Li: Int. J. Impact Eng. Vol. 48 (2012), p.33.

Google Scholar

[8] S. K. Deb Nath, C. H. Wong: J. Eng. Mech.-ASCE Vol. 137 (2011), p.258.

Google Scholar

[9] X. Jun, H. Junjia, Z. Chunyan: Chinese J. Aeronaut. Vol. 22 (2009), p.262.

Google Scholar

[10] N. Lorphelin, R. Robin, A.S. Rollier, S. Touati, A. Kanciurzewski, O. Millet K. Segueni: J. Micromech. Microeng. Vol. 19 (2009), paper 074017 (9pp).

DOI: 10.1088/0960-1317/19/7/074017

Google Scholar

[11] J.B. Ma, L. Jiang, S.F. Asokanthan: Nanotechnology Vol. 21 (2010), paper 505708 (9pp).

Google Scholar

[12] D.R.J. Owen, E. Hinton: Finite Elements in Plasticity: Theory and practice (Pineridge Press Limited, Swansea 1980).

Google Scholar

[13] R.I.M. Al-Amery, T.M. Roberts: Comput. Struct. Vol. 35 (1990), p.81.

Google Scholar

[14] F. Hartman, C. Katz: Structural Analysis with Finite Elements (Springer-Verlag, Berlin 2007).

Google Scholar

[15] P.G. Hodge: Plastic Analysis of Structures (McGraw-Hill, New York 1959).

Google Scholar

[16] J. Chakrabarty: Theory of Plasticity (Elsevier Butterworth-Heinemann, Oxford 2006).

Google Scholar