[1]
S. Lan, H.J. Lee, E. Kim, J. Ni, S.H. Lee, X. Lai, J.H. Song, N.K. Lee, M.G. Lee, A parameter study on the micro hot-embossing process of glassy polymer for pattern replication, Microelectronic Engineering 86 (2009) 2369-2374.
DOI: 10.1016/j.mee.2009.04.023
Google Scholar
[2]
Y.H. Song, Q. Zheng, Linear viscoelasticity of polymer melts filled with nano-sized fillers, Polymer 51 (2010) 3262-3268.
DOI: 10.1016/j.polymer.2010.05.018
Google Scholar
[3]
Y.H. Song, Q. Zheng, Application of two phase model to linear viscoelasticity of reinforced rubbers, Polymer 52 (2011) 593-596.
DOI: 10.1016/j.polymer.2010.12.047
Google Scholar
[4]
A.D. Drozdov, Linear thermo-viscoelasticity of polypropylene, Mechanics Research Communications 37 (2010) 690-695.
DOI: 10.1016/j.mechrescom.2010.10.004
Google Scholar
[5]
W. Yu, W. Zhou, C. Zhou, Linear viscoelasticity of polymer blends with co-continuous morphology, Polymer 51 (2010) 2091-2098.
DOI: 10.1016/j.polymer.2010.03.005
Google Scholar
[6]
M. Worgull, M. Heckele, New aspects of simulation in hot embossing, Microsystem Technologies 10 (2004) 432-437.
DOI: 10.1007/s00542-004-0418-z
Google Scholar
[7]
X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, Journal of Materials Processing Technology 212 (2012) 2173-2182.
DOI: 10.1016/j.jmatprotec.2012.05.023
Google Scholar
[8]
M. Worgull, A. Kolew, M. Heilig, M. Schneider, H. Dinglreiter, B. Rapp, Hot embossing of high performance polymers, Microsyst. Technol. 17 (2011) 585-592.
DOI: 10.1007/s00542-010-1155-0
Google Scholar
[9]
J.M. Li, C. Liu, J. Peng, Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum, Journal of Materials Processing Technology 207 (2008) 163-171.
DOI: 10.1016/j.jmatprotec.2007.12.062
Google Scholar
[10]
Y. Luo, X.D. Wang, F. Yang, Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip, Journal of Materials Processing Technology 208 (2008) 63-69.
DOI: 10.1016/j.jmatprotec.2007.12.146
Google Scholar
[11]
M. Worgull, Hot embossing process, in: Hot embossing process: Hot embossing theory and technology of microreplication, first ed., Elsevier Inc., USA, 2009, pp.137-177.
DOI: 10.1016/b978-0-8155-1579-1.50011-2
Google Scholar
[12]
R.Z. Li, Time-temperature superposition method for glass transition temperature of plastic materials, Materials Science and Engineering A 278 (2000) 36-45.
DOI: 10.1016/s0921-5093(99)00602-4
Google Scholar
[13]
M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, Journal of American Chemical Society 77 (1955) 3701-3707.
DOI: 10.1021/ja01619a008
Google Scholar
[14]
C.P. Buckley, D.C. Jones, Glass-rubber constitutive model for amorphous polymers near the glass transition, Polymer 36 (1995) 3301-3312.
DOI: 10.1016/0032-3861(95)99429-x
Google Scholar
[15]
C. Jo, J. Fu, H.E. Naguib, Constitutive modeling for mechanical behavior of PMMA microcellular foams, Polymer 46 (2005) 11896-11903.
DOI: 10.1016/j.polymer.2005.09.054
Google Scholar
[16]
P.S. He, H.Y. Yang, P.P. Zhu, Understanding the nature of viscoelasticity of polymer based on relaxation time defined from Maxwell model, Chemistry Online 9 (2004) 705-706.
Google Scholar
[17]
R.S. Lakes, Review article: Viscoelastic measurement techniques, Review of Scientific Instruments 75 (2004) 797-810.
DOI: 10.1063/1.1651639
Google Scholar
[18]
M.A. Sawpan, P.G. Holdsworth, P. Renshaw, Glass transitions of hygrothermal aged pultruded glass fibre reinforced polymer rebar by dynamic mechanical thermal analysis, Materials and Design 42 (2012) 272-278.
DOI: 10.1016/j.matdes.2012.06.008
Google Scholar
[19]
D.S. Jones, Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance, International Journal of Pharmaceutics 179 (1999) 167-178.
DOI: 10.1016/s0378-5173(98)00337-8
Google Scholar
[20]
F. Radiy, C.W. Richards, Internal friction and dynamic modulus transitions in hardened cement paste at low temperatures, Materials and Structures 2 (1969) 17-22.
DOI: 10.1007/bf02473651
Google Scholar
[21]
J. Capodagli, R. Lakes, Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time–temperature superposition, Rheologica. Acta. 47 (2008) 777-786.
DOI: 10.1007/s00397-008-0287-y
Google Scholar