Time-Efficient and Precise FEM/BEM Simulation of a Cold Forging Process Verified by Tool Load Determination

Article Preview

Abstract:

Developing green processes establishes new possibilities for cold forging industry. Current technological developments require automotive parts with less mass, but higher material-efficiency. To achieve these goals, high-strength steels and complex geometries are used. The rising process forces lead to increased tool loads and subsequently elastic tool deformation resulting in early tool failure or dimensional deviations. A numerical determination of tool loads during process enables their reduction by a load-dependent design of the tool geometry. Aim of this work is a time-efficient and precise determination of tool loads considering the complete tool system using the example of a lateral extrusion process. By domain decomposition into Finite Element Method (FEM) and Boundary Element Method (BEM) domains and subsequently an integrated FEM/BEM simulation, a significant computation time reduction towards a conventional FEM model is achieved. Experiments of the examined lateral extrusion process provide data for the verification of the investigated process simulation models. In order to be able to validate the simulated elastic tool deformations, strain gauges are installed on the die insert and allow an experimental measurement of the elastic radial die strains. Additionally the simulated process force development and the final workpiece geometry of the simulation models are compared with experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

317-327

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Liewald, A. Felde, R. Völkl, G. Messner, M. Meidert, H. Gensert, Stand der Forschung und Entwicklung im Bereich der Verfahren der Kaltmassivumformung in Europa, UTFscience IV (2011) 1-32.

Google Scholar

[2] Kommission der Europäischen Gemeinschaften: Ergebnisse der Überprüfung der Strategie der Gemeinschaft zur Minderung der CO2-Emissionen von Personenkraftwagen und leichten Nutzfahrzeugen, Mitteilung der Kommission an den Rat und das Europäische Parlament, Kom 19 (2007).

DOI: 10.1007/s00501-008-0424-z

Google Scholar

[3] K. Poehlandt, Werkzeuge der Kaltmassivumformung, Expert, Renningen-Malmsheim, 1999.

Google Scholar

[4] B. Y. Jun, S. M. Kang, M. C. Lee, R. H. Park, M. S. Joun, Prediction of geometric dimensions for cold forgings using the finite element method, Journal of Materials Processing Technology 189 (2007) 459-465.

DOI: 10.1016/j.jmatprotec.2007.02.030

Google Scholar

[5] Y. Lee, J. Lee, T. Ishikawa, Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy, Journal of Materials Processing Technology 130-131 (2002) 532-539.

DOI: 10.1016/s0924-0136(02)00800-2

Google Scholar

[6] Y. Lee, J. Lee, J. Choi, T. Ishikawa, Experimental and analytical evaluation for elastic deformation behaviors of cold forging tool, Journal of Materials Processing Technology 127 (2002) 73-82.

DOI: 10.1016/s0924-0136(02)00268-6

Google Scholar

[7] B. Brady, A. Wassyng, A coupled Finite-Element-Boundary Element Method of Stress Analysis, Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr. 18 (1981) 475-485.

DOI: 10.1016/0148-9062(81)90512-x

Google Scholar

[8] O. C. Zienkiewicz, R. L. Taylor, The finite element method, sixth ed., Elsevier Butterworth-Heinemann, Amsterdam, 2006.

Google Scholar

[9] A. E. Tekkaya, P. A. F. Martins, Accuracy, reliability and validity of finite element analysis in metal forming: a user's perspective, International Journal for Computer-Aided Engineering and Software 26 (2009) 1026-1055.

DOI: 10.1108/02644400910996880

Google Scholar

[10] K. Lange, Umformtechnik – Handbuch für Industrie und Wissenschaft - Band 4: Sonderverfahren, Prozeßsimulation, Werkzeugtechnik, Produktion, second ed., Springer, Berlin Heidelberg, 1993.

DOI: 10.1007/978-3-642-58047-5_13

Google Scholar

[11] S. Rjasanow, O. Steinbach, The Fast Solution of Boundary Integral Equations, Springer, Berlin-Heidelberg-NewYork, 2007.

Google Scholar

[12] O. C. Zienkiewicz, D.W. Kelly, P. Bettess, The coupling of the finite element method and boundary solution procedures, International Journal for Numerical Methods in Engineering 11 (1977), 355–375.

DOI: 10.1002/nme.1620110210

Google Scholar

[13] V. Bäcker, F. Klocke, A. Timmer, P. Mattfeld, F. Schongen, R. Grzhibovskis, S. Rjasanow, Time Efficient Numerical Tool Optimization for Wear Reduction in Deep Drawing, in: G. Hirt, A.E. Tekkaya, (Eds.), Proceedings of 10th Int. Conf. Techn. Plast. ICTP, Aachen, Germany, Stahleisen, Düsseldorf, 2011, pp.390-395.

Google Scholar

[14] V. Bäcker, Numerical Tool Optimization in Deep Drawing, Diss., RWTH Aachen University, Laboratory for Machine Tools and Production Engineering, 2011.

Google Scholar

[15] V. Bäcker, F. Klocke, H. Wegner, A. Timmer, R. Grzhibovskis, S. Rjasanow, Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling, in: Proceedings of IOP Conference Series: Materials Science and Engineering, 10, 2010, pp.1-10.

DOI: 10.1088/1757-899x/10/1/012134

Google Scholar

[16] F. Schongen, F. Klocke, V. Bäcker, B. Feldhaus, Time-efficient and precise tool load determination for a lateral extrusion process by coupled FEM/BEM simulation, in: H. Leitner, R. Kranz, A. Tremmel (Eds.), 9th Tooling Conference / 4th International Conference on Heat Treatment of Tools and Dies, 11 September 2012 to 14 September 2012, Leoben/Austria, Gutenberghaus, Knittelfeld/Austria, 2012, pp.543-550.

DOI: 10.4028/www.scientific.net/kem.554-557.317

Google Scholar

[17] F. Klocke, F. Schongen, D. Trauth, S. Rjasanow, M. Fleck, R. Grzhibovskis, FEM/BEM Simulation eines Kaltmassivumformprozesses. Zeiteffiziente und präzise Berechnung von Werkzeugbelastungen durch gekoppelte FEM/BEM Simulation, wt Werkstattstechnik online 102 (2012) 678-683.

DOI: 10.37544/1436-4980-2012-10-678

Google Scholar

[18] T. Spittel, M. Spittel, Fließspannung und Umformvermögen einiger Stähle, Mannesmann Demag Sack, Düsseldorf, 1992.

Google Scholar