[1]
J. Kusiak, M. Pietrzyk, J.-L. Chenot, Die shape design and evaluation of microstructure control in the closed-die axisimmetrical forging by using FORGE2 program, ISIJ International, 34 (1994) 755-760.
DOI: 10.2355/isijinternational.34.755
Google Scholar
[2]
K.S. Park, Chester J. VanTyne, Y.H. Moon, Process analysis of multistage forging by using finite element method, 187-188 (2007) 586-590.
DOI: 10.1016/j.jmatprotec.2006.11.036
Google Scholar
[3]
M. Pietrzyk, Ł. Madej, S. Węglarczyk, Tool for optimal design of manufacturing chain based on metal forming, CIRP Annals - Manufacturing Technology, 57 (2008) 309-312.
DOI: 10.1016/j.cirp.2008.03.099
Google Scholar
[4]
P.F. Bariani, S. Bruschi, A. Ghiotti, M. Simionato, Ductile fracture prediction in cold forging process chains, CIRP Annals - Manufacturing Technology, 60 (2011) 287–290.
DOI: 10.1016/j.cirp.2011.03.135
Google Scholar
[5]
B.-A. Behrens, B. Denkena, F. Charlin, M. Dannenberg, Model based optimization of forging process chains by the use of genetic algorithm, Proc. 10th ICTP, eds, G. Hirt, E.A. Tekkaya, Aachen, 2011, 154-158.
Google Scholar
[6]
M. Skóra, S. Węglarczyk, J. Kusiak, M. Pietrzyk, Computer aided design of manufacturing of fasteners – selection of the best production chain, Key Engineering Materials, 504-506 (2012) 157-162.
DOI: 10.4028/www.scientific.net/kem.504-506.157
Google Scholar
[7]
R. Kuziak, M. Skóra, S. Węglarczyk, M. Paćko, M. Pietrzyk, Computer aided design of the manufacturing chain for fasteners, Comp. Meth. Mater. Sci., 11 (2011), 243-250.
Google Scholar
[8]
R. Kuziak, V. Pidvysots'kyy, S. Węglarczyk, M. Pietrzyk, Bainitic steels as alternative for conventional carbon-manganese steels in manufacturing of fasteners - simulation of production chain, Comp. Meth. Mater. Sci., 11 (2011), 443 – 462.
Google Scholar
[9]
J.-L. Chenot, M. Bellet, M., The Viscoplastic Approach for the finite-element modelling of metal forming processes, in: P. Hartley, I. Pillinger, C.E.N. Sturges (Eds), Numerical modelling of material deformation processes, Springer-Verlag, London, Berlin, 1992, 179-224.
DOI: 10.1007/978-1-4471-1745-2_8
Google Scholar
[10]
D. Szeliga, J. Gawąd J., Pietrzyk M., Inverse analysis for identification of rheological and friction models in metal forming, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 6778-6798.
DOI: 10.1016/j.cma.2005.03.015
Google Scholar
[11]
A.-B. Behrens, Finite element analysis of die wear in forging, CIRP Annals – Manufacturing Technology, 57 (2008) 305-308.
DOI: 10.1016/j.cirp.2008.03.087
Google Scholar
[12]
J.F. Archard, Contact and rubbing of flat surfaces, J. of Applied Physics, 24, 1953, 981-988.
DOI: 10.1063/1.1721448
Google Scholar
[13]
S. Waengler, R. Kawalla, R. Kuziak, High strength – high toughness bainitic steels alloyed with niobium for long products, steel research international, 79, 2008, spec. edition Metal Forming Conf., vol. 2, 273-279.
Google Scholar
[14]
R. Kuziak, A. Milenin, M. Paćko, M. Pietrzyk, Fasteners of bainitic steels manufactured by drawing and forging, Hutnik-Wiadomości-Hutnicze, 78 (2011) 74-77.
Google Scholar
[15]
E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk, M. Pietrzyk, Rheological model for simulation of hot rolling of new generation steel strips for automotive industry, Steel Research Int., 77, 2006, 927-933.
DOI: 10.1002/srin.200606483
Google Scholar
[16]
M. Skóra, R. Kuziak, M. Paćko, M. Pietrzyk, Computer aided design of manufacturing of anchors for concrete plates - selection of the best manufacturing chain, Hutnik-Wiadomości Hutnicze, 80, 2013, (in press).
Google Scholar
[17]
L. Madej, S. Węglarczyk, M. Pietrzyk, Simulation of drawing as an important stage in the steel bolt manufacturing chain, Hutnik-Wiadomości Hutnicze, 76, 2009, 71-73.
Google Scholar