Study on the Influences of Ultrasonic Conditions on the Dispersion of Multi-Walled Carbon Nanotubes in Reinforced Epoxy

Article Preview

Abstract:

Absrtract. In this paper, the method of ultrasonic vibration in preparation of multi-walled carbon nanotubes(MWCNTs)/epoxy resin composites was studied. Suspension specimens of MWCNTs/epoxy resin solution prepared by different ultrasonic conditions were compared to find out the influences of operating conditions on dispersion properties. In this study, transmission electron microscopes(TEM) were used to characterize the morphology of the blends and suspension stability was used to evaluate the stability of blends. The results showed that ultrasonic power, ultrasonic time and material quantity have great effect on the dispersion of MWCNTs in epoxy resin solution. Increasing ultrasonic power and time can improve dispersion of MWCNTs, and decreasing material quantity within an appropriate range was helpful to disperse MWCNTs into epoxy resin solution. The results of suspension stability were very similar with TEM results, which demonstrate that suspension stability of MWCNTs/epoxy resin blending could be used as an assistant method to characterize the dispersion of MWCNTs in epoxy resin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-53

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kong, H.,Gao, C.,Yan, D. Y., Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc., 126 (2004)412-413.

DOI: 10.1021/ja0380493

Google Scholar

[2] Kong, H.,Gao, C.,Yan, D. Y., Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules, 37 (2004)4022-4030.

DOI: 10.1021/ma049694c

Google Scholar

[3] Donnet, J. B., Nano and microcomposites of polymers elastomers and their reinforcement. Compos. Sci. Technol., 63 (2003)1085-1088.

DOI: 10.1016/s0266-3538(03)00028-9

Google Scholar

[4] Yang, K.,Gu, M. Y.,Jin, Y. P.,Mu, G. H.,Pan, X. F., Influence of surface treated multi-walled carbon nanotubes on cure behavior of epoxy nanocomposites. Compos. Pt. A-Appl. Sci. Manuf., 39 (2008)1670-1678.

DOI: 10.1016/j.compositesa.2008.07.011

Google Scholar

[5] Yang, K.,Gu, M. Y.,Jin, Y. P., Cure Behavior and Thermal Stability Analysis of Multiwalled Carbon Nanotube/Epoxy Resin Nanocomposites. J. Appl. Polym. Sci., 110 (2008)2980-2988.

DOI: 10.1002/app.28898

Google Scholar

[6] Eitan, A.,Jiang, K. Y.,Dukes, D.,Andrews, R.,Schadler, L. S., Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mat., 15 (2003)3198-3201.

DOI: 10.1021/cm020975d

Google Scholar

[7] Liao, Y. H.,Marietta-Tondin, O.,Liang, Z. Y.,Zhang, C.,Wang, B., Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 385 (2004)175-181.

DOI: 10.1016/s0921-5093(04)00857-3

Google Scholar

[8] Camponeschi, E.,Florkowski, B.,Vance, R.,Garrett, G.,Garmestani, H.,Tannenbaum, R., Uniform directional alignment of single-walled carbon nanotubes in. viscous polymer flow. Langmuir, 22 (2006)1858-1862.

DOI: 10.1021/la052714z

Google Scholar

[9] Krause, B.,Petzold, G.,Pegel, S.,Potschke, P., Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers. Carbon, 47 (2009)602-612.

DOI: 10.1016/j.carbon.2008.10.040

Google Scholar

[10] Shi, D. L.,Lian, J.,He, P.,Wang, L. M.,Xiao, F.,Yang, L.,Schulz, M. J.,Mast, D. B., Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Appl. Phys. Lett., 83 (2003)5301-5303.

DOI: 10.1063/1.1636521

Google Scholar

[11] Miyagawa, H.,Drzal, L. T., Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer, 45 (2004)5163-5170.

DOI: 10.1016/j.polymer.2004.05.036

Google Scholar

[12] Gojny, F. H.,Wichmann, M. H. G.,Fiedler, B.,Bauhofer, W.,Schulte, K., Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Pt. A-Appl. Sci. Manuf., 36 (2005)1525-1535.

DOI: 10.1016/j.compositesa.2005.02.007

Google Scholar

[13] Thostenson, E. T.,Chou, T. W., Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon, 44 (2006)3022-3029.

DOI: 10.1016/j.carbon.2006.05.014

Google Scholar

[14] Lau, K. T.,Lu, M.,Lam, C. K.,Cheung, H. Y.,Sheng, F. L.,Li, H. L., Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Technol., 65 (2005)719-725.

DOI: 10.1016/j.compscitech.2004.10.005

Google Scholar

[15] Prolongo, S. G.,Buron, M.,Gude, M. R.,Chaos-Moran, R.,Campo, M.,Urena, A., Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites. Compos. Sci. Technol., 68 (2008)2722-2730.

DOI: 10.1016/j.compscitech.2008.05.015

Google Scholar