[1]
P. Verde, G. Lamanna, Fatigue properties and strength degradation of carbon fibre reinforced composites, World Academy of Science, Engineering and Technology 73 (2013) 1512-1516. P-ISSN: 2010-376X; E-ISSN: 2010-3778.
Google Scholar
[2]
F. Caputo, G. Lamanna, A. Soprano, Geometrical parameters influencing a hybrid mechanical coupling, Key Engineering Materials 525-526 (2012) 161-164.
DOI: 10.4028/www.scientific.net/kem.525-526.161
Google Scholar
[3]
G. Lamanna, F. Caputo, A. Soprano, Handling of composite-metal interface in a hybrid mechanical coupling, American Institute of Physics 1459 (2012) 353-355.
DOI: 10.1063/1.4738494
Google Scholar
[4]
F. Caputo, G. Lamanna, A. Soprano, A strategy for a robust design of cracked stiffened panels, World Academy of Science, Engineering and Technology 73 (2013) 1517-1522. ISSN: 2010-376X.
Google Scholar
[5]
F. Caputo, G. Lamanna, A. Soprano, On the evaluation of the plastic zone size at the crack tip, Engineering Fracture Mechanics 103 (2013) 162-173.
DOI: 10.1016/j.engfracmech.2012.09.030
Google Scholar
[6]
F. Caputo, G. Lamanna, A. Soprano, An analytical formulation for the plastic deformation at the tip of short cracks, Procedia Eng. 10 (2011), 2988-2993.
DOI: 10.1016/j.proeng.2011.04.495
Google Scholar
[7]
ASTM D 7137 – D 7137 M-12, Standard test method for compressive residual strength properties of damaged polymer matrix composite plates (2012).
DOI: 10.1520/d7137_d7137m-05
Google Scholar
[8]
E. Armentani, C. Calì, F. Caputo, G. Cricrì, R. Esposito, Numerical solution techniques for structural instability problems, Journal of Achievements in Materials and Manufacturing Engineering, 19, 53-64 (2006).
Google Scholar
[9]
A. Riccio, N. Tessitore, Influence of Loading Conditions on the Impact Damage Resistance of Composite Panels, Computers & Structures, 83, 2306-2317 (2005).
DOI: 10.1016/j.compstruc.2005.03.033
Google Scholar
[10]
L. Reis, M. De Freitas, Failure mechanisms on composite specimens subjected to compression after impact, Composite Structures 42(4) (1998) 365-373.
DOI: 10.1016/s0263-8223(98)00081-6
Google Scholar
[11]
G. A. O. Davies, X. Zhang, Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 16(1) (1995) 149-170.
DOI: 10.1016/0734-743x(94)00039-y
Google Scholar
[12]
Riccio A., Perugini P., Scaramuzzino F., Embedded Delamination Growth In Composite Panels Under Compressive Load, Composites part B: Engineering, 32, 209-218 (2001).
DOI: 10.1016/s1359-8368(00)00057-3
Google Scholar
[13]
A. Riccio, L. Marciano, Effects of Geometrical and Material Features on Damage Onset and Propagation in Single-lap Bolted Composite Joints under Tensile Load: Part I – Experimental Studies, Int. Journal of Composite Materials, 39, 2071-2090 (2005).
DOI: 10.1177/0021998305052026
Google Scholar
[14]
A. Riccio, Effects of Geometrical and Material Features on Damage Onset and Propagation in Single-lap Bolted Composite Joints under Tensile Load: Part II – Numerical Studies, Int. Journal of Composite Materials, 39, 2091-2112 (2005).
DOI: 10.1177/0021998305052027
Google Scholar
[15]
A. Sellitto, R. Borrelli, F. Caputo, A. Riccio, F. Scaramuzzino, Application of the mesh superposition technique to the study of delaminations in composites thin plates, Key Engineering Materials 525-526 (2012) 533-536.
DOI: 10.4028/www.scientific.net/kem.525-526.533
Google Scholar
[16]
F. Caputo, G. Lamanna, A. Soprano, Energy absorption capabilities of a square tube system, Key Engineering Materials 488 - 489 (2011) 561-564.
DOI: 10.4028/www.scientific.net/kem.488-489.561
Google Scholar
[17]
G. Lamanna, F. Caputo, A. Soprano, Numerical Investigation on the Structural Behavior of a Composite Impact Absorber, Key Engineering Materials 417-418 (2010) 685-688.
DOI: 10.4028/www.scientific.net/kem.417-418.685
Google Scholar
[18]
http: /wwwserv2. go. t-systems-sfr. com/garteur/structures/AG/AG-28-TP-155_final_report. pdf.
Google Scholar