Numerical Procedures for Damage Mechanisms Analysis in CFRP Composites

Article Preview

Abstract:

Damage after impact often involves aeronautic structures. The aircraft can be involved in impacts during the assembly stage and operative life. Typical impacts can be related to falling tools, hailstones, debris on the take-off strip thrown against the aircraft by the rolling tyres, maintenance operations. There are two categories of damage impact: Low and High Velocity Impact (LVI, HVI). Damages coming from low velocity impacts are difficult to identify because they are often within the composite structure and the use of non-destructive testing, e.g. ultrasonic test, is not convenient. In order to prevent catastrophic events the designers must increase the safety margin and thereby the weight of the aircraft. The present study shows two different numerical procedures based on finite elements method to investigate on some damage mechanisms of a carbon fibre reinforced plastic (CFRP) structures (e.g. interface debonding, fibre or matrix cracking) and the residual strength of such structures under live loads.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

111-118

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Verde, G. Lamanna, Fatigue properties and strength degradation of carbon fibre reinforced composites, World Academy of Science, Engineering and Technology 73 (2013) 1512-1516. P-ISSN: 2010-376X; E-ISSN: 2010-3778.

Google Scholar

[2] F. Caputo, G. Lamanna, A. Soprano, Geometrical parameters influencing a hybrid mechanical coupling, Key Engineering Materials 525-526 (2012) 161-164.

DOI: 10.4028/www.scientific.net/kem.525-526.161

Google Scholar

[3] G. Lamanna, F. Caputo, A. Soprano, Handling of composite-metal interface in a hybrid mechanical coupling, American Institute of Physics 1459 (2012) 353-355.

DOI: 10.1063/1.4738494

Google Scholar

[4] F. Caputo, G. Lamanna, A. Soprano, A strategy for a robust design of cracked stiffened panels, World Academy of Science, Engineering and Technology 73 (2013) 1517-1522. ISSN: 2010-376X.

Google Scholar

[5] F. Caputo, G. Lamanna, A. Soprano, On the evaluation of the plastic zone size at the crack tip, Engineering Fracture Mechanics 103 (2013) 162-173.

DOI: 10.1016/j.engfracmech.2012.09.030

Google Scholar

[6] F. Caputo, G. Lamanna, A. Soprano, An analytical formulation for the plastic deformation at the tip of short cracks, Procedia Eng. 10 (2011), 2988-2993.

DOI: 10.1016/j.proeng.2011.04.495

Google Scholar

[7] ASTM D 7137 – D 7137 M-12, Standard test method for compressive residual strength properties of damaged polymer matrix composite plates (2012).

DOI: 10.1520/d7137_d7137m-05

Google Scholar

[8] E. Armentani, C. Calì, F. Caputo, G. Cricrì, R. Esposito, Numerical solution techniques for structural instability problems, Journal of Achievements in Materials and Manufacturing Engineering, 19, 53-64 (2006).

Google Scholar

[9] A. Riccio, N. Tessitore, Influence of Loading Conditions on the Impact Damage Resistance of Composite Panels, Computers & Structures, 83, 2306-2317 (2005).

DOI: 10.1016/j.compstruc.2005.03.033

Google Scholar

[10] L. Reis, M. De Freitas, Failure mechanisms on composite specimens subjected to compression after impact, Composite Structures 42(4) (1998) 365-373.

DOI: 10.1016/s0263-8223(98)00081-6

Google Scholar

[11] G. A. O. Davies, X. Zhang, Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 16(1) (1995) 149-170.

DOI: 10.1016/0734-743x(94)00039-y

Google Scholar

[12] Riccio A., Perugini P., Scaramuzzino F., Embedded Delamination Growth In Composite Panels Under Compressive Load, Composites part B: Engineering, 32, 209-218 (2001).

DOI: 10.1016/s1359-8368(00)00057-3

Google Scholar

[13] A. Riccio, L. Marciano, Effects of Geometrical and Material Features on Damage Onset and Propagation in Single-lap Bolted Composite Joints under Tensile Load: Part I – Experimental Studies, Int. Journal of Composite Materials, 39, 2071-2090 (2005).

DOI: 10.1177/0021998305052026

Google Scholar

[14] A. Riccio, Effects of Geometrical and Material Features on Damage Onset and Propagation in Single-lap Bolted Composite Joints under Tensile Load: Part II – Numerical Studies, Int. Journal of Composite Materials, 39, 2091-2112 (2005).

DOI: 10.1177/0021998305052027

Google Scholar

[15] A. Sellitto, R. Borrelli, F. Caputo, A. Riccio, F. Scaramuzzino, Application of the mesh superposition technique to the study of delaminations in composites thin plates, Key Engineering Materials 525-526 (2012) 533-536.

DOI: 10.4028/www.scientific.net/kem.525-526.533

Google Scholar

[16] F. Caputo, G. Lamanna, A. Soprano, Energy absorption capabilities of a square tube system, Key Engineering Materials 488 - 489 (2011) 561-564.

DOI: 10.4028/www.scientific.net/kem.488-489.561

Google Scholar

[17] G. Lamanna, F. Caputo, A. Soprano, Numerical Investigation on the Structural Behavior of a Composite Impact Absorber, Key Engineering Materials 417-418 (2010) 685-688.

DOI: 10.4028/www.scientific.net/kem.417-418.685

Google Scholar

[18] http: /wwwserv2. go. t-systems-sfr. com/garteur/structures/AG/AG-28-TP-155_final_report. pdf.

Google Scholar