RFID Based Sensing for Structural Health Monitoring

Article Preview

Abstract:

RFID is a rapidly developing technology of wireless communication and identification mostly used in supply chain systems, logistic and access control. Nowadays attempts to transfer this technology to other applications are carried out. This paper presents review of global researches performed last years, on application of RFID technology to tasks connected with wireless passive sensing in Structural Health Monitoring, with additional overview of works conducted in this subject by the authors. Sensors based on this technology require neither battery nor wire. It could be interrogated from distance, its lifetime is almost unlimited. Investigations, focused both on using RFID transponder as a sensing element, as well as, using antenna as a energy harvesting part that could power the sensor circuit, are mentioned. Performed studies show, that despite problems connected with using high frequencies, described wireless sensors should be useful for SHM tasks.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

1178-1185

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Landt, The history of RFID, IEEE Potentials, 24 (2005), 8 - 11.

Google Scholar

[2] K. Finkenzeller, RFID Handbook, Fundamentals and applications in Contactless Smart Cards and Identification, second ed., John Wiley and Sons Ltd, Chichester, (2003).

DOI: 10.1145/1005062.1005077

Google Scholar

[3] H. Lehpammer, RFID Design Principles, first ed., Artech House Inc., Norwood, (2008).

Google Scholar

[4] S. -C. Liu, M. Tomizuka, G. Ulsoy, Strategic issues in sensors and smart structures, Structural Control and Health Monitoring, 13 (2006) 946-957.

DOI: 10.1002/stc.88

Google Scholar

[5] A. Deivasigamani, A. Daliri, C.H. Wang, S. John, A Review of Passive Wireless Sensors for Structural Health Monitoring, Modern Applied Science, 7 (2013) 57 - 76.

DOI: 10.5539/mas.v7n2p57

Google Scholar

[6] R. Bhattacharyya, C. Floerkemeier, S. Sarma, Low-Cost, Ubiquitous RFID-Tag-Antenna-Based Sensing, Proceedings of the IEEE, 98 (2010) 1593 - 1600.

DOI: 10.1109/jproc.2010.2051790

Google Scholar

[7] R. Bhattacharyya, C. Floerkemeier, S. Sarma, Towards Tag Antenna Based Sensing – An RFID Displacement Sensor, Proc. of 2009 IEEE International Conference on RFID, (2009) 95 - 102.

DOI: 10.1109/rfid.2009.4911195

Google Scholar

[8] C. Occhiuzzi, C. Paggi, G. Marrocco, Passive RFID Strain-Sensor Based on Meander-Line Antennas, IEEE Transactions on Antennas and Propagation, 59 (2011) 4836 - 4840.

DOI: 10.1109/tap.2011.2165517

Google Scholar

[9] S. Caizzone, G. Marrocco, RFID-Grids for deformation sensing, Proc. of 2012 IEEE International Conference on RFID, (2012) 130 - 134.

DOI: 10.1109/rfid.2012.6193040

Google Scholar

[10] M.M. Andringa, D.P. Neikirk, N.P. Dickerson, S.L. Wood, Unpowered Wireless Corrosion Sensor for Steel Reinforced Concrete, Proc. of 2005 IEEE Sensors, (2005) 155 - 158.

DOI: 10.1109/icsens.2005.1597659

Google Scholar

[11] K. Morita, K. Noguchi, Crack Detection Methods for Concrete and Steel using Radio Frequency Identification and Electrically Conductive Materials and its Applications, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proc. of SPIE 6932 (2008).

DOI: 10.1117/12.775967

Google Scholar

[12] K.J. Loh, J.P. Lynch, N.A. Kotov, Passive Wireless Sensing Using SWNT based Multifunctional Thin Film Patches, International Journal of Applied Electromagnetics and Mechanics, 28 (2008) 87-94.

DOI: 10.3233/jae-2008-961

Google Scholar

[13] K.J. Loh, J.P. Lynch, N.A. Kotov, Passive Wireless Strain and pH Sensing Using Carbon Nanotube-Gold Nanocomposite Thin Films, Proceedings of SPIE - The International Society for Optical Engineering, 6529 (2007) 652919-1 - 652919-12.

DOI: 10.1117/12.715826

Google Scholar

[14] M. Philipose, J.R. Smith, B. Jiang, A. Mamishev, S. Roy, K. Sundara-Rajan, Battery-Free Wireless Identification and Sensing, IEEE Pervasive Computing, 4 (2005) 37-45.

DOI: 10.1109/mprv.2005.7

Google Scholar

[15] J.R. Smith, A.P. Sample, P.S. Powledge, S. Roy, A. Mamishev, A Wirelessly-Powered Platform for Sensing and Computation, Lecture Notes in Computer Science, 4206 (2006) 495-506.

DOI: 10.1007/11853565_29

Google Scholar

[16] F. Gasco, P. Feraboli, J. Braun, J.R. Smith, P. Stickler, L. Deoto, Wireless strain measurement for structural testing and health monitoring of carbon fiber composites, Composites Part A: Applied Science and Manufacturing, 42 (2011) 1263-1274.

DOI: 10.1016/j.compositesa.2011.05.008

Google Scholar

[17] C. Palmer, A. Gutterman, G. Argenna, V. Inclan, A. Zyuzin, Wireless, Batteryless Distributed Strain Sensing for Structural Health Monitoring, Proc. of the 8th International Workshop on Structural Health Monitoring, (2011) 386-393.

Google Scholar

[18] Y. Ikemoto, S. Suzuki, H. Okamoto, H. Murakami, H. Asama, S. Morishita, T. Mishima, X. Lin, H. Itoh, Force Sensor System for Structural Health Monitoring using Passive RFID Tags, Sensor Review, 29 (2009) 127-136.

DOI: 10.1108/02602280910936237

Google Scholar

[19] T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer, R. Weigel, A Multistandard HF/ UHF-RFID-Tag With Integrated Sensor Interface and Localization Capability, Proc. of 2012 IEEE International Conference on RFID, (2012) 66-73.

DOI: 10.1109/rfid.2012.6193058

Google Scholar

[20] M. Lisowski, T. Uhl, Wireless passive RFID based sensor for crack detection, Pomiary Automatyka Kontrola, 58 (2012) 724 - 727.

Google Scholar

[21] M. Lisowski, T. Uhl, Wireless passive sensor for crack detection - conception and investigations, Pomiary Automatyka Kontrola, 58 (2012) 991 - 993.

Google Scholar

[22] Y. Jia, K. Sun, F.J. Agosto, M.T. Quĩones, Design and characterization of a passive wireless strain sensor, Measurement Science and Technology, 17 (2006) 2869-2876.

DOI: 10.1088/0957-0233/17/11/002

Google Scholar