Failure Stress in Notched Paper Sheets

Article Preview

Abstract:

In this work the crack initiation stress of notched specimens of filter paper is studied. The paper in the microstructure has a random array in their fibers while macroscopically it behaves anisotropically. The self-affine crack mechanics is used to study the size effect in the tensile behavior of this kind of paper under the presence of several conditions of geometrical notches. While in the traditional fracture mechanics the crack initiation stress is a material parameter when is reached a critical level at the crack tip, in the self-affine crack mechanics, depends moreover of the resulting tortuosity of the crack. Four geometrical arrangements in two sizes we considered: centered circular notch, centered lineal notch, sided circular notches and without notch at 10 and 300 mm width with a relation 2a/w = 0.25 under the same loading conditions. In this, the without notch specimens present the higher stress, all other notched specimens presented a similar crack initiation stress about 1 % of difference among them, and the crack growth is not affected by the geometry of notch. In spite of this difference, no one of the specimens reach the theoretical stress concentration of 3 such as predicted the classical stress theory.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

417-424

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kim L. Pickering (ed). Properties and Performance of Natural-Fiber Composites. Woodhead Publishing Limited and CRC Press LLC.

Google Scholar

[2] M. J. Alava, K. Niskanen. The Physics of Paper. Rep. Prog. Phys. 69 (2006) 669-723.

DOI: 10.1088/0034-4885/69/3/r03

Google Scholar

[3] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company. New York, (1983).

Google Scholar

[4] J. J. Mecholsky, , D. E. Passoja, K. S. Feinberg-Ringel. Quantitative Analysis of Brittle Fracture Surfaces using Fractal Geometry. J. Am. Cer. Soc. 72 (1989) 60-65.

DOI: 10.1111/j.1151-2916.1989.tb05954.x

Google Scholar

[5] G. R. Baran, C. Roques-Carmes, D. Wehbi, M. Degrange. Fractal Characteristcs of Fracture Surfaces. J. Am. Cer. Soc. 75 (1992) 2687-2691.

DOI: 10.1111/j.1151-2916.1992.tb05489.x

Google Scholar

[6] D. L. Davidson. Fracture Surface Roughness as a Gauge of Fracture Toughness: Aluminum-Particulate SiC Composites. J. Mat. Sci. 24 (1989) 681-687.

DOI: 10.1007/bf01107459

Google Scholar

[7] A. S. Balankin. Physics of Fracture and Mechanics of Self-affine Cracks. Engng. Fracture Mech. 57 (1997) 135-203.

DOI: 10.1016/s0013-7944(97)00007-6

Google Scholar

[8] M. P. Wnuk, A. Yavari. A Correspondence Principle for Fractal and Classical Cracks. Engng. Fracture Mech. 72 (2005) 2744-2757.

DOI: 10.1016/j.engfracmech.2005.07.003

Google Scholar

[9] A. Seweryn, K. Molski. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Engng. Fracture Mech. 55 (1996) 529–556.

DOI: 10.1016/s0013-7944(96)00035-5

Google Scholar

[10] M. P. Savruk, A. Kazberuk. Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches. Int. J. Fract. 161 (2010) 79-95.

DOI: 10.1007/s10704-009-9430-8

Google Scholar

[11] I. L. Menezes-Sobrinho, A. T. Bernardes, and J. G. Moreira, Failure regimes in (1+1) dimensions in fibrous materials. Phys. Rev. E 63(2001) 025104(R).

DOI: 10.1103/physreve.63.025104

Google Scholar

[12] S. Santucci, L. Vanel, and S. Ciliberto, Subcritical Statistics in Rupture of Fibrous Materials: Experiments and Model. Phys. Rev. Lett. 93 (2004) 095505.

DOI: 10.1103/physrevlett.93.095505

Google Scholar

[13] K. B. Broberg, Cracks and Fracture (Academic Press, NewYork, 1999).

Google Scholar

[14] K. Hellan. Introduction to Fracture Mechanics. McGraw Hill Inc. Singapure, (1984).

Google Scholar

[15] J. Li, M. Ostoja-Starzewski. Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465 (2009) 2521-2536.

DOI: 10.1098/rspa.2009.0101

Google Scholar

[16] S. J. Turrado, P. R. Ramírez, R. S. Pérez. Fiber properties and their influence on paper structure. In G. G. R. Allan (Ed): Interactive Paper, Proceedings of SPIE, Guadalajara, Méx, 1996, pp.45-55.

Google Scholar

[17] N. Provatas, M. J. Alava, T. Ala-Nissila. Density Correlations in Paper. Phys. Rev. E 54(1996) R36-R38.

DOI: 10.1103/physreve.54.r36

Google Scholar

[18] H. Tada, P. C. Paris, G. R. Irwin. The stress analysis of cracks handbook. 3rd Ed. The American Society of Mechanical Engineers, New York, (2000).

Google Scholar

[19] J. Kertész, V. K. Horvárth, F. Weber. Self-affine rupture lines in paper sheets. Fractals 1 (1993) 67-74.

DOI: 10.1142/s0218348x93000101

Google Scholar

[20] C. A. Mora Santos, M. del R. Rivera Martínez, O. Susarrey Huerta, A. Balankin, M. A. Mendoza Núñez. Key Engng. Mats. 449(2010) 23-28.

DOI: 10.4028/www.scientific.net/kem.449.23

Google Scholar

[21] I. L. Menezes-Sobrinho, M. S. Couto, R. B. Ribeiro. Anisotropy in rupture line paper sheets. Phys. Rev. E 71 (2005), 066121.

DOI: 10.1103/physreve.71.066121

Google Scholar

[22] Kotowski, P. Fractal Dimension of Metallic Fracture Surfaces. Int. J. Fract. 141 (2006) 269-286.

DOI: 10.1007/s10704-006-8264-x

Google Scholar

[23] T. L. Anderson. Fracture Mechanics, fundamentals and applications, 2nd Ed. CRC Press LLC. Boca Raton, Florida, (1995).

Google Scholar

[24] M. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman and Company, New York, (1991).

Google Scholar

[25] A. S. Balankin, O. Susarrey, C. A. Mora Santos, J. Patiñoo, A. Yoguez, and E. I. García. Stress concentration and size effect in fracture of notched heterogeneous material. Phys. Rev. E 83 (2011), 015101(R).

DOI: 10.1103/physreve.83.015101

Google Scholar