[1]
Kim L. Pickering (ed). Properties and Performance of Natural-Fiber Composites. Woodhead Publishing Limited and CRC Press LLC.
Google Scholar
[2]
M. J. Alava, K. Niskanen. The Physics of Paper. Rep. Prog. Phys. 69 (2006) 669-723.
DOI: 10.1088/0034-4885/69/3/r03
Google Scholar
[3]
B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company. New York, (1983).
Google Scholar
[4]
J. J. Mecholsky, , D. E. Passoja, K. S. Feinberg-Ringel. Quantitative Analysis of Brittle Fracture Surfaces using Fractal Geometry. J. Am. Cer. Soc. 72 (1989) 60-65.
DOI: 10.1111/j.1151-2916.1989.tb05954.x
Google Scholar
[5]
G. R. Baran, C. Roques-Carmes, D. Wehbi, M. Degrange. Fractal Characteristcs of Fracture Surfaces. J. Am. Cer. Soc. 75 (1992) 2687-2691.
DOI: 10.1111/j.1151-2916.1992.tb05489.x
Google Scholar
[6]
D. L. Davidson. Fracture Surface Roughness as a Gauge of Fracture Toughness: Aluminum-Particulate SiC Composites. J. Mat. Sci. 24 (1989) 681-687.
DOI: 10.1007/bf01107459
Google Scholar
[7]
A. S. Balankin. Physics of Fracture and Mechanics of Self-affine Cracks. Engng. Fracture Mech. 57 (1997) 135-203.
DOI: 10.1016/s0013-7944(97)00007-6
Google Scholar
[8]
M. P. Wnuk, A. Yavari. A Correspondence Principle for Fractal and Classical Cracks. Engng. Fracture Mech. 72 (2005) 2744-2757.
DOI: 10.1016/j.engfracmech.2005.07.003
Google Scholar
[9]
A. Seweryn, K. Molski. Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Engng. Fracture Mech. 55 (1996) 529–556.
DOI: 10.1016/s0013-7944(96)00035-5
Google Scholar
[10]
M. P. Savruk, A. Kazberuk. Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches. Int. J. Fract. 161 (2010) 79-95.
DOI: 10.1007/s10704-009-9430-8
Google Scholar
[11]
I. L. Menezes-Sobrinho, A. T. Bernardes, and J. G. Moreira, Failure regimes in (1+1) dimensions in fibrous materials. Phys. Rev. E 63(2001) 025104(R).
DOI: 10.1103/physreve.63.025104
Google Scholar
[12]
S. Santucci, L. Vanel, and S. Ciliberto, Subcritical Statistics in Rupture of Fibrous Materials: Experiments and Model. Phys. Rev. Lett. 93 (2004) 095505.
DOI: 10.1103/physrevlett.93.095505
Google Scholar
[13]
K. B. Broberg, Cracks and Fracture (Academic Press, NewYork, 1999).
Google Scholar
[14]
K. Hellan. Introduction to Fracture Mechanics. McGraw Hill Inc. Singapure, (1984).
Google Scholar
[15]
J. Li, M. Ostoja-Starzewski. Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465 (2009) 2521-2536.
DOI: 10.1098/rspa.2009.0101
Google Scholar
[16]
S. J. Turrado, P. R. Ramírez, R. S. Pérez. Fiber properties and their influence on paper structure. In G. G. R. Allan (Ed): Interactive Paper, Proceedings of SPIE, Guadalajara, Méx, 1996, pp.45-55.
Google Scholar
[17]
N. Provatas, M. J. Alava, T. Ala-Nissila. Density Correlations in Paper. Phys. Rev. E 54(1996) R36-R38.
DOI: 10.1103/physreve.54.r36
Google Scholar
[18]
H. Tada, P. C. Paris, G. R. Irwin. The stress analysis of cracks handbook. 3rd Ed. The American Society of Mechanical Engineers, New York, (2000).
Google Scholar
[19]
J. Kertész, V. K. Horvárth, F. Weber. Self-affine rupture lines in paper sheets. Fractals 1 (1993) 67-74.
DOI: 10.1142/s0218348x93000101
Google Scholar
[20]
C. A. Mora Santos, M. del R. Rivera Martínez, O. Susarrey Huerta, A. Balankin, M. A. Mendoza Núñez. Key Engng. Mats. 449(2010) 23-28.
DOI: 10.4028/www.scientific.net/kem.449.23
Google Scholar
[21]
I. L. Menezes-Sobrinho, M. S. Couto, R. B. Ribeiro. Anisotropy in rupture line paper sheets. Phys. Rev. E 71 (2005), 066121.
DOI: 10.1103/physreve.71.066121
Google Scholar
[22]
Kotowski, P. Fractal Dimension of Metallic Fracture Surfaces. Int. J. Fract. 141 (2006) 269-286.
DOI: 10.1007/s10704-006-8264-x
Google Scholar
[23]
T. L. Anderson. Fracture Mechanics, fundamentals and applications, 2nd Ed. CRC Press LLC. Boca Raton, Florida, (1995).
Google Scholar
[24]
M. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman and Company, New York, (1991).
Google Scholar
[25]
A. S. Balankin, O. Susarrey, C. A. Mora Santos, J. Patiñoo, A. Yoguez, and E. I. García. Stress concentration and size effect in fracture of notched heterogeneous material. Phys. Rev. E 83 (2011), 015101(R).
DOI: 10.1103/physreve.83.015101
Google Scholar