[1]
C.M. Wang, T. Utsunomiya, S.C. Wee, Y.S. Choo, Research on floating wind turbines: a literature survey, The IES Journal Part A: Civil & Struct. Eng., 3(4) (2010) 267–277.
DOI: 10.1080/19373260.2010.517395
Google Scholar
[2]
A. R. Henderson, R. Leutz, T. Fujii, Potential for floating offshore wind Energy in Japanese waters. Proceedings of The 12th International Offshore and Polar Eng. Conference, Japan, (2002).
Google Scholar
[3]
P.D. Sclavounos, S. Lee et al., Floating offshore wind turbines: Tension-leg platform and Taught-leg nuoy concept supporting 3-5 MW wind turbines, EWEC, Poland, (2010).
DOI: 10.1002/we.2453
Google Scholar
[4]
IEA, Renewable Energy Essentials: Wind, 2008. Available from: www. iea. org.
Google Scholar
[5]
IEA, Energy Technology Perspectives 2012: Pathways to a Clean Energy System, (2012).
Google Scholar
[6]
C.Z. Archer, M.L. Jacobson, Evaluation of global wind power, J. Geophysic Res. 110 (2005).
Google Scholar
[7]
M. Karimirad, Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems, Ph.D. thesis, Norwegian University of Science and Tech., Norway, (2011).
Google Scholar
[8]
ISSC (2009) Specialist Committee V. 4, Ocean wind and wave energy utilization, 17th International Ship and Offshore Structures Congress, Seoul, Korea.
Google Scholar
[9]
M.B. Waris, T. Ishihara, Dynamic response analysis of FOWT with different types of heave plates and mooring systems by using a fully nonlinear model, Coupled Sys. Mech., 1(3) (2012).
DOI: 10.12989/csm.2012.1.3.247
Google Scholar
[10]
N. Barltrop, Multiple floating offshore wind farm, Wind Eng., 17(4) (1993) 183-188.
Google Scholar
[11]
A. Henderson, M. Patel, Rigid-body motion of a floating offshore wind farm, Int. J. Ambient Energy, 19(3) (1998) 167-180.
Google Scholar
[12]
B.H. Bulder, M.T. van Hees et al., Study to feasibility of and boundary conditions for floating offshore wind turbines, Report 2002-CMC-R43, ECN, MARIN, MSC, TNO, TUD, (2002).
Google Scholar
[13]
P.V. Phuc, T. Ishihara, A study on the dynamic response of a semi-submersible floating offshore wind turbine system Part 2: Numerical simulation, ICWE12, Australia, (2007).
DOI: 10.2208/jsceja.65.601
Google Scholar
[14]
P. Bertacchi, A. Di Monaco, M. de Gerloni, G. Ferranti, ELOMAR-A moored platform for wind turbines, Wind Eng., 18(4) (1994) 189-198.
Google Scholar
[15]
K.C. Tong, Technical and economic aspects of a floating offshore wind farm, J. Wind Eng. Industrial Aerodyn., 74–76 (1998) 399–410. DOI: 10. 1016/S0167-6105(98)00036-1.
DOI: 10.1016/s0167-6105(98)00036-1
Google Scholar
[16]
J.M. Jonkman, Dynamics modeling and loads analysis of an offshore floating wind turbine, Tech. Rep. NREL/TP-500-41958, Nov. 2007, National Renewable Energy Laboratory, Golden, CO.
DOI: 10.2172/1097305
Google Scholar
[17]
D. Matha, J.M. Jonkman, A quantitative comparison of the responses of three floating platforms, European Offshore Wind 2009 Conference and Exhibition, Sweden, (2009).
Google Scholar
[18]
F.G. Nielsen, Dynamic issues related to floating offshore wind turbines, Presentation, Technical University of Denmark, 2011, Available from: www. comwind. mek. dtu. dk.
Google Scholar
[19]
F.G. Nielson, T.D. Hanson, B. Skaare, Integrated dynamic analysis of floating offshore wind turbines, OMAE 2006 (ASME), Germany, 2006, DOI: 10. 1115/OMAE2006-92291.
DOI: 10.1115/omae2006-92291
Google Scholar
[20]
A. R. Henderson, M.H. Patel. On the modelling of a floating offshore wind turbine. Wind Energ., 6(2003) 53–86, DOI: 10. 1002/we. 83.
DOI: 10.1002/we.83
Google Scholar
[21]
H. Matsukuma, T. Utsunomiya, Motion analysis of a floating offshore wind turbine considering rotor rotation. The IES Journal Part A: Civil and Struct. Eng., 1(4) (2008), 268–279.
DOI: 10.1080/19373260802401702
Google Scholar
[22]
T. Utsunomiya, T. Sato, H. Matsukuma, K. Yago, Experimental validation for motion of a spar-type floating offshore wind turbine using 1/22. 5 scale model, OMAE 2009 (ASME).
DOI: 10.1115/omae2009-79695
Google Scholar
[23]
H. Suzuki, A. Sato, Load on turbine blade induced by motion of floating platform and design requirement for the platform, OMAE 2007 (ASME), DOI: 10. 1115/OMAE2007-29500.
Google Scholar
[24]
H. Suzuki, M. Kurimoto, Y. Kitahara, Y. Fukumoto, Progressive drifting of floating wind turbines in a wind farm, OMAE 2009 (ASME), DOI: 10. 1115/OMAE2009-79634.
DOI: 10.1115/omae2009-79634
Google Scholar
[25]
J. M. Jonkman, and M. L. Buhl Jr., FAST User's Guide, Tech. Rep. NREL/EL-500-38230, National Renewable Energy Laboratory, Golden, CO, (2005).
Google Scholar
[26]
A. Cordle, J.M. Jonkman, State of the art in floating wind turbine design tools, Proceedings of the 21st International Offshore and Polar Engineering Conference, Hawaii, (2011).
Google Scholar
[27]
D.J. Laino, A.C. Hansen, User's guide to the wind turbine aerody-namics computer software AeroDyn, National Renewable Energy Laboratory, Golden, CO, (2002).
Google Scholar
[28]
D.J. Laino, A.C. Hansen, User's guide to the computer software routines AeroDyn interface for ADAMS®, Prepared for the NREL under Subcontract No. TCX-9-29209-01, (2001).
Google Scholar
[29]
T. Holmas, USFOS theory manual, version 8-1, Norway, (2004).
Google Scholar
[30]
MARINTEK, 2008, SIMO/RIFLEX User's Manual, SINTEF, Trondheim, Norway.
Google Scholar
[31]
Fylling, I., Mo, K., Merz, K, Luxcey, N., 2009. Floating wind turbine - Response analysis with rigid-body model, European Offshore Wind 2009, Stockholm, Sweden.
Google Scholar
[32]
Larsen, T.J. and A.M. Hansen (2012). How 2 HAWC2, the user's manual, version 4-2, Risø National Laboratory, Denmark. Available from: www. risoe. dtu. dk.
Google Scholar
[33]
C.H. Lee, J.N. Newman, WAMIT® User Manual, Versions 6. 3, WAMIT, Inc., MA, (2006).
Google Scholar
[34]
B. Skaare, T.D. Hanson, F.G. Nielsen, R. Yttervik, A.M. Hansen, K. Thomsen, T.J. Larsen, Integrated dynamic analysis of floating offshore wind turbines, EWEC, Milan, (2007).
DOI: 10.1115/omae2006-92291
Google Scholar
[35]
T.J. Larsen, T.D. Hanson. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, J. Phys.: Conference Series 75 (2007).
DOI: 10.1088/1742-6596/75/1/012073
Google Scholar
[36]
M. Karimirad, Q. Meissonnier, Z. Gao, T. Moan T. Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine, Marine Struct., 24(2011)412–35.
DOI: 10.1016/j.marstruc.2011.05.006
Google Scholar
[37]
M. Karimirad, T. Moan. Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions, J. Offshore Mech. Arctic Eng. (ASME), 133(2011).
DOI: 10.1115/1.4003393
Google Scholar
[38]
M. Karimirad, T. Moan, Wave- and wind-induced dynamic response of catenary moored spar wind turbine, J. Waterway, Port, Coastal, and Ocean Eng. (ASCE) 138(1)(2012a) 9–20.
DOI: 10.1061/(asce)ww.1943-5460.0000087
Google Scholar
[39]
M. Karimirad, T. Moan, Feasibility of the application of a spar-type wind turbine at a moderate water depth, Energy Procedia 24 ( 2012c) 340–350. doi: 10. 1016/j. egypro. 2012. 06. 117.
DOI: 10.1016/j.egypro.2012.06.117
Google Scholar
[40]
M. Karimirad, T. Moan, A simplified method for coupled analysis of floating offshore wind turbines, Marine Struct. 27 (2012b) 45–63, doi: 10. 1016/j. marstruc. 2012. 03. 003.
DOI: 10.1016/j.marstruc.2012.03.003
Google Scholar
[41]
M. Karimirad, T. Moan, Stochastic dynamic response analysis of a tension leg spar-type offshore wind turbine, Wind Energ. (2012d), doi: 10. 1002/we. 1537.
DOI: 10.1002/we.1537
Google Scholar
[42]
M. Karimirad, Modeling aspects of a floating wind turbine for coupled wave-wind-induced dynamic analyses, Renewable Energy 53 (2013) 299-305, DOI: 10. 1016/j. renene. 2012. 12. 006.
DOI: 10.1016/j.renene.2012.12.006
Google Scholar