On the Modeling of Spar-Type Floating Offshore Wind Turbines

Article Preview

Abstract:

In this paper an overview about floating offshore wind turbines (FOWT) including operating conditions, property and applicability of the barge, tension-leg, and spar floating platforms is described. The spar-floating offshore wind turbines (S-FOWT) have advantages in deepwater and their preliminary design, numerical modeling tools and integrated modeling are reviewed. Important conclusions about the nacelle and blade motions, tower response, effects of wind and wave loads, overall vibration and power production of the S-FOWT are summarized. Computationally-simplified models with acceptable accuracy are necessary for feasibility and pre-engineering studies of the FOWT. The design needs modeling and analysis of aero-hydro-servo dynamic coupling of the entire FOWT. This paper also familiarizes authors with FOWT and its configurations and modeling approaches.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

636-643

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.M. Wang, T. Utsunomiya, S.C. Wee, Y.S. Choo, Research on floating wind turbines: a literature survey, The IES Journal Part A: Civil & Struct. Eng., 3(4) (2010) 267–277.

DOI: 10.1080/19373260.2010.517395

Google Scholar

[2] A. R. Henderson, R. Leutz, T. Fujii, Potential for floating offshore wind Energy in Japanese waters. Proceedings of The 12th International Offshore and Polar Eng. Conference, Japan, (2002).

Google Scholar

[3] P.D. Sclavounos, S. Lee et al., Floating offshore wind turbines: Tension-leg platform and Taught-leg nuoy concept supporting 3-5 MW wind turbines, EWEC, Poland, (2010).

DOI: 10.1002/we.2453

Google Scholar

[4] IEA, Renewable Energy Essentials: Wind, 2008. Available from: www. iea. org.

Google Scholar

[5] IEA, Energy Technology Perspectives 2012: Pathways to a Clean Energy System, (2012).

Google Scholar

[6] C.Z. Archer, M.L. Jacobson, Evaluation of global wind power, J. Geophysic Res. 110 (2005).

Google Scholar

[7] M. Karimirad, Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems, Ph.D. thesis, Norwegian University of Science and Tech., Norway, (2011).

Google Scholar

[8] ISSC (2009) Specialist Committee V. 4, Ocean wind and wave energy utilization, 17th International Ship and Offshore Structures Congress, Seoul, Korea.

Google Scholar

[9] M.B. Waris, T. Ishihara, Dynamic response analysis of FOWT with different types of heave plates and mooring systems by using a fully nonlinear model, Coupled Sys. Mech., 1(3) (2012).

DOI: 10.12989/csm.2012.1.3.247

Google Scholar

[10] N. Barltrop, Multiple floating offshore wind farm, Wind Eng., 17(4) (1993) 183-188.

Google Scholar

[11] A. Henderson, M. Patel, Rigid-body motion of a floating offshore wind farm, Int. J. Ambient Energy, 19(3) (1998) 167-180.

Google Scholar

[12] B.H. Bulder, M.T. van Hees et al., Study to feasibility of and boundary conditions for floating offshore wind turbines, Report 2002-CMC-R43, ECN, MARIN, MSC, TNO, TUD, (2002).

Google Scholar

[13] P.V. Phuc, T. Ishihara, A study on the dynamic response of a semi-submersible floating offshore wind turbine system Part 2: Numerical simulation, ICWE12, Australia, (2007).

DOI: 10.2208/jsceja.65.601

Google Scholar

[14] P. Bertacchi, A. Di Monaco, M. de Gerloni, G. Ferranti, ELOMAR-A moored platform for wind turbines, Wind Eng., 18(4) (1994) 189-198.

Google Scholar

[15] K.C. Tong, Technical and economic aspects of a floating offshore wind farm, J. Wind Eng. Industrial Aerodyn., 74–76 (1998) 399–410. DOI: 10. 1016/S0167-6105(98)00036-1.

DOI: 10.1016/s0167-6105(98)00036-1

Google Scholar

[16] J.M. Jonkman, Dynamics modeling and loads analysis of an offshore floating wind turbine, Tech. Rep. NREL/TP-500-41958, Nov. 2007, National Renewable Energy Laboratory, Golden, CO.

DOI: 10.2172/1097305

Google Scholar

[17] D. Matha, J.M. Jonkman, A quantitative comparison of the responses of three floating platforms, European Offshore Wind 2009 Conference and Exhibition, Sweden, (2009).

Google Scholar

[18] F.G. Nielsen, Dynamic issues related to floating offshore wind turbines, Presentation, Technical University of Denmark, 2011, Available from: www. comwind. mek. dtu. dk.

Google Scholar

[19] F.G. Nielson, T.D. Hanson, B. Skaare, Integrated dynamic analysis of floating offshore wind turbines, OMAE 2006 (ASME), Germany, 2006, DOI: 10. 1115/OMAE2006-92291.

DOI: 10.1115/omae2006-92291

Google Scholar

[20] A. R. Henderson, M.H. Patel. On the modelling of a floating offshore wind turbine. Wind Energ., 6(2003) 53–86, DOI: 10. 1002/we. 83.

DOI: 10.1002/we.83

Google Scholar

[21] H. Matsukuma, T. Utsunomiya, Motion analysis of a floating offshore wind turbine considering rotor rotation. The IES Journal Part A: Civil and Struct. Eng., 1(4) (2008), 268–279.

DOI: 10.1080/19373260802401702

Google Scholar

[22] T. Utsunomiya, T. Sato, H. Matsukuma, K. Yago, Experimental validation for motion of a spar-type floating offshore wind turbine using 1/22. 5 scale model, OMAE 2009 (ASME).

DOI: 10.1115/omae2009-79695

Google Scholar

[23] H. Suzuki, A. Sato, Load on turbine blade induced by motion of floating platform and design requirement for the platform, OMAE 2007 (ASME), DOI: 10. 1115/OMAE2007-29500.

Google Scholar

[24] H. Suzuki, M. Kurimoto, Y. Kitahara, Y. Fukumoto, Progressive drifting of floating wind turbines in a wind farm, OMAE 2009 (ASME), DOI: 10. 1115/OMAE2009-79634.

DOI: 10.1115/omae2009-79634

Google Scholar

[25] J. M. Jonkman, and M. L. Buhl Jr., FAST User's Guide, Tech. Rep. NREL/EL-500-38230, National Renewable Energy Laboratory, Golden, CO, (2005).

Google Scholar

[26] A. Cordle, J.M. Jonkman, State of the art in floating wind turbine design tools, Proceedings of the 21st International Offshore and Polar Engineering Conference, Hawaii, (2011).

Google Scholar

[27] D.J. Laino, A.C. Hansen, User's guide to the wind turbine aerody-namics computer software AeroDyn, National Renewable Energy Laboratory, Golden, CO, (2002).

Google Scholar

[28] D.J. Laino, A.C. Hansen, User's guide to the computer software routines AeroDyn interface for ADAMS®, Prepared for the NREL under Subcontract No. TCX-9-29209-01, (2001).

Google Scholar

[29] T. Holmas, USFOS theory manual, version 8-1, Norway, (2004).

Google Scholar

[30] MARINTEK, 2008, SIMO/RIFLEX User's Manual, SINTEF, Trondheim, Norway.

Google Scholar

[31] Fylling, I., Mo, K., Merz, K, Luxcey, N., 2009. Floating wind turbine - Response analysis with rigid-body model, European Offshore Wind 2009, Stockholm, Sweden.

Google Scholar

[32] Larsen, T.J. and A.M. Hansen (2012). How 2 HAWC2, the user's manual, version 4-2, Risø National Laboratory, Denmark. Available from: www. risoe. dtu. dk.

Google Scholar

[33] C.H. Lee, J.N. Newman, WAMIT® User Manual, Versions 6. 3, WAMIT, Inc., MA, (2006).

Google Scholar

[34] B. Skaare, T.D. Hanson, F.G. Nielsen, R. Yttervik, A.M. Hansen, K. Thomsen, T.J. Larsen, Integrated dynamic analysis of floating offshore wind turbines, EWEC, Milan, (2007).

DOI: 10.1115/omae2006-92291

Google Scholar

[35] T.J. Larsen, T.D. Hanson. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, J. Phys.: Conference Series 75 (2007).

DOI: 10.1088/1742-6596/75/1/012073

Google Scholar

[36] M. Karimirad, Q. Meissonnier, Z. Gao, T. Moan T. Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine, Marine Struct., 24(2011)412–35.

DOI: 10.1016/j.marstruc.2011.05.006

Google Scholar

[37] M. Karimirad, T. Moan. Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions, J. Offshore Mech. Arctic Eng. (ASME), 133(2011).

DOI: 10.1115/1.4003393

Google Scholar

[38] M. Karimirad, T. Moan, Wave- and wind-induced dynamic response of catenary moored spar wind turbine, J. Waterway, Port, Coastal, and Ocean Eng. (ASCE) 138(1)(2012a) 9–20.

DOI: 10.1061/(asce)ww.1943-5460.0000087

Google Scholar

[39] M. Karimirad, T. Moan, Feasibility of the application of a spar-type wind turbine at a moderate water depth, Energy Procedia 24 ( 2012c) 340–350. doi: 10. 1016/j. egypro. 2012. 06. 117.

DOI: 10.1016/j.egypro.2012.06.117

Google Scholar

[40] M. Karimirad, T. Moan, A simplified method for coupled analysis of floating offshore wind turbines, Marine Struct. 27 (2012b) 45–63, doi: 10. 1016/j. marstruc. 2012. 03. 003.

DOI: 10.1016/j.marstruc.2012.03.003

Google Scholar

[41] M. Karimirad, T. Moan, Stochastic dynamic response analysis of a tension leg spar-type offshore wind turbine, Wind Energ. (2012d), doi: 10. 1002/we. 1537.

DOI: 10.1002/we.1537

Google Scholar

[42] M. Karimirad, Modeling aspects of a floating wind turbine for coupled wave-wind-induced dynamic analyses, Renewable Energy 53 (2013) 299-305, DOI: 10. 1016/j. renene. 2012. 12. 006.

DOI: 10.1016/j.renene.2012.12.006

Google Scholar