Key Engineering Materials
Vols. 577-578
Vols. 577-578
Key Engineering Materials
Vols. 575-576
Vols. 575-576
Key Engineering Materials
Vol. 574
Vol. 574
Key Engineering Materials
Vol. 573
Vol. 573
Key Engineering Materials
Vol. 572
Vol. 572
Key Engineering Materials
Vol. 571
Vol. 571
Key Engineering Materials
Vols. 569-570
Vols. 569-570
Key Engineering Materials
Vol. 568
Vol. 568
Key Engineering Materials
Vol. 567
Vol. 567
Key Engineering Materials
Vol. 566
Vol. 566
Key Engineering Materials
Vols. 562-565
Vols. 562-565
Key Engineering Materials
Vol. 561
Vol. 561
Key Engineering Materials
Vol. 560
Vol. 560
Key Engineering Materials Vols. 569-570
Paper Title Page
Abstract: Anaerobic corrosion of steel reinforcement is rarely reported and limited literature is available on the subject. Corrosion of steel is an electrochemical process requiring a supply of oxygen in the presence of moisture. Steel corrosion product usually occupies a much larger volume than the un-corroded steel resulting in cracked or spalled concrete. If the supply of oxygen is restricted, black rust may be formed by the process of anaerobic corrosion. Black rust is not expansive, which makes it particularly difficult to detect in reinforced concrete. This paper presents a case study of anaerobic corrosion in the Mizen Bridge, together with an in-depth review of anaerobic corrosion of reinforcement in concrete, outlining black rust formation, characteristics and detection methods.
1124
Abstract: The sensitivity of the electromechanical impedance to structural damage under varying temperature is investigated in this paper. An approach based on maximizing cross-correlation coefficients is used to compensate temperature effects. The experiments are carried out on an air plane conform carbon fiber reinforced plastic (CFRP) panel (500mm x 500mm x 5mm) instrumented with 26 piezoelectric transducers of two different sizes. In a first step, the panel is stepwise subjected to temperatures between-50 °C and 100 °C. The influence of varying temperatures on the measured impedances and the capability of the temperature compensation approach are analyzed. Next, the sensitivity to a 200 J impact damage is analyzed and it is set in relation to the influence of a temperature change. It becomes apparent the impact of the transducer size and location on the quality of the damage detection. The results further indicate a significant influence of temperature on the measured spectra. However, applying the temperature compensation algorithm can reduce the temperature effect at the same time increasing the transducer sensitivity within its measuring area. The paper concludes with a discussion about the trade-off between the sensing area, where damage should be detected, and the temperature range, in which damage within this area can reliably be detected.
1132
Abstract: Measured data from operating systems are often acquired to predict structural health of a system. With only a few measurement sensors, very limited understanding of the system can be obtained. Utilizing some recent novel expansion results, full field information can be obtained to identify a more complete strain description for the system. Using these results in conjunction with an analytical prediction of the expected strains, comparisons and differences can be identified using time response data. The expected full field stress-strain from the analytical model is compared to the predicted full field dynamic stress strain from limited sets of measured locations due to either operating or imposed loading on the structure. Differences in strain distributions at many time increments can provide indications of regions of possible damage in the structure. The work presented in this paper identifies the methodology as well as some results to illustrate the usefulness of the approach.
1140
Abstract: System identification in the frequency domain plays a fundamental role in many aspects of mechanical and structural engineering. Frequency domain approaches typically involve estimation of a transfer function, whether it is the usual frequency response function (FRF) or an output-to-output transfer model (transmissibility). The field of structural health monitoring, which involves extracting and classifying features mined from in-sit structural performance data for the purposes of damage condition assessment, has exploited many features for this purpose that inherently are derived from estimations of frequency domain models such as the FRF or transmissibility. Structural health monitoring inevitably involves a hypothesis test at the classification stage such as the (common) binary question: are the features mined from data derived from a reference condition or from data derived from a different (test) condition Inevitably, this decision involves stochastic data, as any such candidate feature is compromised by error, which we categorize as (i) operational and environmental, (ii) measurement, and (iii) computational/estimation. Regardless of source, this noise leads to the propagation of error, resulting in possible false positive (Type I) errors in the classification. As such, the quantification of uncertainty in the estimation of such features is tantamount to making informed decisions based on a hypothesis test. This paper will demonstrate several statistical models that describe the uncertainty in FRF estimation and will compare their performance to features derived from them for the purposes of detecting damage, with ultimate performance evaluated by receiver operating characteristics (ROCs). A simulation and a plate subject to single-input/single-output vibration testing will serve as the comparison testbeds.
1148
Abstract: Safety operation of overhead lines depends on many factors including strength of conductors and earth wires. Therefore worn-out or defective conductors or earth wires must be detected. Estimation of conductor technical conditions is based on comparison of revealed flaws with requirements of overhead line project and build documentation. It is well known that conductors are affected by corrosion, friction and fatigue wear. All this factors may cause loss of strength and even breakage of conductor. Steel core is the most important part of conductor when it comes to mechanical loads. That is why it is very important to know actual technical conditions of steel core of conductor. Worn or defective wires must be repaired or replaced. Principles of strength assessment of deteriorated of steel-aluminum conductors and steel earth wires based on magnetic non-destructive testing technique are presented. The retention of overhead line conductor and earth wire is one of the most reasonable ways to eliminate the unacceptable clearances. The allowable magnifying tension, regarding the reliable operation, is set relying upon the non-destructive testing of conductors or earth wires in actual state. The measured loss of metallic cross-section area due to abrasion, corrosion etc. and local wire breaks are treated as input data for mechanical model of objects under test. The residual strength estimates give the specialists network company further information that helps to make a valid decision on testing time-limit and policy. Some results of assessing the strength of overhead line conductors and earth wires according to the NDT data are demonstrated.
1156
Abstract: A study has been carried out to characterize the effect of variation of processing parameters on the phase contrast data between defective and defect-free areas obtained through the use of pulse phase thermography (PPT). Processing parameters used to implement the fast Fourier transform (FFT) have been varied. Phase contrast was maximized when the datum used as the start point for the FFT was taken as the frame just after the pulse. Optimum recording duration was found when the surface temperature had returned to its initial temperature. A truncation shorter than this resulted in a reduced phase contrast. Sampling interval and range is required to be balanced against the quantity of data produced and the computational expense. A sampling frequency of 0.06 Hz was suggested for the sample studied as this allowed peak phase contrast to be captured without unnecessarily increasing data size. Repeatability of tests was also investigated. It was found that PPT phase contrast results have been found to be repeatable with a maximum standard deviation of 6°.
1164
Abstract: Cross-entropy optimization has recently been applied to the damage detection in structures subject to static loading. The optimization procedure minimizes the error between the measured deflection data and theoretical deflection data obtained from artificially generated finite element models based on assumed statistical distributions of stiffness for each discretized element. Following a number of iterations, the finite element model with stiffness properties producing deflections closer to reality is established as the mathematical model closest to the true structure. However, while previous testing of the algorithm has been relatively successful, it has been limited to theoretical simulations. Therefore, this paper conducts lab experiments on a beam loaded statically to test the accuracy of the algorithm. Deflections are measured for beam scenarios under different loading levels. The accuracy of the results is discussed and recommendations are made to improve the performance of the algorithm when implemented in practice.
1170
Abstract: RFID is a rapidly developing technology of wireless communication and identification mostly used in supply chain systems, logistic and access control. Nowadays attempts to transfer this technology to other applications are carried out. This paper presents review of global researches performed last years, on application of RFID technology to tasks connected with wireless passive sensing in Structural Health Monitoring, with additional overview of works conducted in this subject by the authors. Sensors based on this technology require neither battery nor wire. It could be interrogated from distance, its lifetime is almost unlimited. Investigations, focused both on using RFID transponder as a sensing element, as well as, using antenna as a energy harvesting part that could power the sensor circuit, are mentioned. Performed studies show, that despite problems connected with using high frequencies, described wireless sensors should be useful for SHM tasks.
1178
Abstract: Signals received by piezoelectric transducers (PZT) network can be influenced by many factors. Apart from environmental conditions, whose variability should be compensated, significant difference in a signal can be also caused by relative geometry changes of a designed sensors node, e.g. the damage localization and its orientation with respect to sensors location in the node. In the adopted approach a set of damage indices (DIs), carrying marginal signal information content and correlated with the total energy received by a given sensor are proposed. These are sensitive to the two main modes of guided wave interaction with a fatigue crack, i.e. its transmission and reflection from a damage. Detailed description of DIs detection capabilities are delivered in the paper. Two dimensional reduction techniques: Principal Component Analysis and Fishers Linear Discriminant are compared. The results of the data collected from specimen fatigue test are used to compare several classification models based on the emerged effective damage indices.
1186
Abstract: Leakage in buried pipes is one of the main concerns for water companies due to the scarcity of potable water sources. Older metallic pipelines have been replaced by plastic pipes in such systems, which makes it more difficult to locate leaks using acoustics and vibration. This is mainly because of the high attenuation of leak signals caused by the damping in the pipe-wall. To investigate acoustic methods in leak location in controlled conditions, a bespoke test rig was constructed in the UK. In this paper, data from this test-rig is used to discuss some issues that arise when using two contemporary correlators. Of particular interest, is the way in which a resonance in the system can have a profound effect on the estimate of the position of the leak depending on the way in which the leak noise signals are processed.
1194