Probabilistic Failure Analysis of Steel Structures Exposed to Fatigue

Article Preview

Abstract:

The paper is focuses on one of probabilistic methods which can be used for failure analysis and reliability assessment of steel structures which are subject to cyclic loads and exposed to fatigue. A particular attention is paid to creation and propagation of fatigue cracks from edges and surface. On the basis of the reliability assessment, a system of inspections is proposed for structural details which tend to be sensitive to fatigue damage. A new probabilistic method which is still under development - Direct Optimized Probabilistic Calculation (DOProC) was used for this probabilistic task. This method is the basis of the FCProbCalc code.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 577-578)

Pages:

101-104

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anderson, T. L., Fracture mechanics: fundamentals and applications, Third edition, CRC Press, Taylor & Francis Group, Boca Raton, Florida, ISBN 0-8493-1656-1 (2005).

Google Scholar

[2] Chen, N. Z., Wang, G. and C. G. Soares, Palmgren-Miner's rule and fracture mechanics-based inspection planning, Engineering Fracture Mechanics, vol. 78, issue 18, p.3166–3182 (17 p), ISSN 0013-7944, DOI: 10.1016/j.engfracmech.2011.08.002, Elsevier Science (2011).

DOI: 10.1016/j.engfracmech.2011.08.002

Google Scholar

[3] Janas, P., Krejsa, M. and V. Krejsa, Structural Reliability Assessment using a Direct Determined Probabilistic Calculation: paper 72. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing: CC 2009, ISBN 978-1-905088-31-7 & ISBN 978-190508830-0, DOI: 10.4203/ccp.91.72, Elsevier B.V. (2012).

DOI: 10.4203/ccp.91.72

Google Scholar

[4] Janas, P., Krejsa, M. and V. Krejsa, Using the Direct Determined Fully Probabilistic Method (DDFPM) for determination of failure. In: Proceedings of European Safety and Reliability Conference (ESREL 2009): Reliability, Risk and Safety: Theory and Applications, pp.1467-1474 (8 p), ISBN 978-0-415-55509-8, ISI: 000281188500203, Taylor & Francis Inc. (2010).

DOI: 10.1201/9780203859759.ch203

Google Scholar

[5] Kala, Z., Geometrically non-linear finite element reliability analysis of steel plane frames with initial imperfections. Journal of Civil Engineering and Management, 18 (1), pp.81-90 (10 p). ISSN 1392-3730, DOI: 10.3846/13923730.2012.655306, Taylor and Francis Inc. (2012).

DOI: 10.3846/13923730.2012.655306

Google Scholar

[6] Kralik, J., Nonlinear probabilistic analysis of the reinforced concrete structure failure of a nuclear power plant considering degradation effects. Applied Mechanics and Materials, Vols. 249-250, pp.1087-1098 (12 p). ISSN 1660-9336, ISBN 978-303785557-7, DOI: 10.4028/www.scientific.net/AMM.249-250.1087, Trans Tech Publications (2013).

DOI: 10.4028/www.scientific.net/amm.249-250.1087

Google Scholar

[7] Krejsa, M., Probabilistic Calculation of Fatigue Crack Progression Using FCProbCalc Code: paper #3. Transactions of the VSB - Technical University of Ostrava: Construction Series [online]. Vol. 12, Issue 1, pp.1-11 (11 p). ISSN 1804-4824 (Online); ISSN 1213-1962 (Print). DOI: 10.2478/v10160-012-0003-9, Warsaw, Poland: Versita (2012).

DOI: 10.2478/v10160-012-0003-9

Google Scholar

[8] Krejsa, M., Stochastic Modeling of Fatigue Crack Progression using the DOProC Method: Paper 113. In: Proceedings of the 11th International Conference on Computational Structures Technology, Dubrovnik, pp.1-18 (18 p). ISBN 978-1-905088-54-6, ISSN 1759-3433. DOI: 10.4203/ccp.99.113, Civil-Comp Press (2012).

DOI: 10.4203/ccp.99.113

Google Scholar

[9] Krejsa, M., Janas, P. and V. Krejsa, Direct Optimized Probabilistic Calculation. In: Recent Advances in Systems Science & Mathematical Modeling: Proceedings of the 3rd International Conference on Mathematical Models for Engineering Science (MMES '12), pp.216-221 (6 p). ISBN 978-1-61804-141-8, Paris, France: WSEAS Press (2012).

Google Scholar

[10] Krejsa, M., Inspection Based Probabilistic Modeling of Fatigue Crack Progression. In: Recent Advances in Mechanical Engineering & Automatic Control: Proceedings of the 3rd European Conference of Mechanical Engineering (ECME' 12), pp.104-109 (6 p). ISBN 978-1-61804-142-5, Paris, France: WSEAS Press (2012).

DOI: 10.1016/j.proeng.2016.02.025

Google Scholar

[11] Krejsa, M., Janas, P. and R. Cajka, Using DOProC Method in Structural Reliability Assessment. Applied Mechanics and Materials: Mechatronics and Applied Mechanics II. Vols. 300 - 301, pp.860-869 (10 p). ISSN 1662-7482, DOI: 10.4028/www.scientific.net/AMM.300-301.860, Trans Tech Publications (2013).

DOI: 10.4028/www.scientific.net/amm.300-301.860

Google Scholar

[12] Krivy, V. and L. Fabian, Calculation of corrosion losses on weathering steel structures. Applied Mechanics and Materials, Vol. 188, pp.177-182 (6 p). ISSN 1660-9336, ISBN 978-303785452-5, DOI: 10.4028/www.scientific.net/AMM.188.177, Trans Tech Publications (2012).

DOI: 10.4028/www.scientific.net/amm.188.177

Google Scholar

[13] Lokaj, A., Vavrusova, K. and E. Rykalova, Application of laboratory tests results of dowel joints in cement-splinter boards VELOX into the fully probabilistic methods (SBRA method). Applied Mechanics and Materials, Vol. 137, pp.95-99 (5 p). ISSN 1660-9336, ISBN 978-303785291-0, DOI: 10.4028/www.scientific.net/AMM.137.95, Trans Tech Publications (2012).

DOI: 10.4028/www.scientific.net/amm.137.95

Google Scholar

[14] Paris, P. C. and F. Erdogan, A Critical Analysis of crack propagation laws, Journal of Basic Engineering, ASME, Vol. 85, pp.528-534 (7 p) (1960).

DOI: 10.1115/1.3656902

Google Scholar

[15] Straub, D. and A. Der Kiureghian, Bayesian Network Enhanced with Structural Reliability Methods: Application, Journal of Engineering Mechanics, vol. 136, issue 10, p.1259–1270 (12 p), DOI: 10.1061/(ASCE)EM.1943-7889.0000170, Trans. ASCE (2010).

DOI: 10.1061/(asce)em.1943-7889.0000170

Google Scholar