[1]
Anderson, T. L., Fracture mechanics: fundamentals and applications, Third edition, CRC Press, Taylor & Francis Group, Boca Raton, Florida, ISBN 0-8493-1656-1 (2005).
Google Scholar
[2]
Chen, N. Z., Wang, G. and C. G. Soares, Palmgren-Miner's rule and fracture mechanics-based inspection planning, Engineering Fracture Mechanics, vol. 78, issue 18, p.3166–3182 (17 p), ISSN 0013-7944, DOI: 10.1016/j.engfracmech.2011.08.002, Elsevier Science (2011).
DOI: 10.1016/j.engfracmech.2011.08.002
Google Scholar
[3]
Janas, P., Krejsa, M. and V. Krejsa, Structural Reliability Assessment using a Direct Determined Probabilistic Calculation: paper 72. In: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing: CC 2009, ISBN 978-1-905088-31-7 & ISBN 978-190508830-0, DOI: 10.4203/ccp.91.72, Elsevier B.V. (2012).
DOI: 10.4203/ccp.91.72
Google Scholar
[4]
Janas, P., Krejsa, M. and V. Krejsa, Using the Direct Determined Fully Probabilistic Method (DDFPM) for determination of failure. In: Proceedings of European Safety and Reliability Conference (ESREL 2009): Reliability, Risk and Safety: Theory and Applications, pp.1467-1474 (8 p), ISBN 978-0-415-55509-8, ISI: 000281188500203, Taylor & Francis Inc. (2010).
DOI: 10.1201/9780203859759.ch203
Google Scholar
[5]
Kala, Z., Geometrically non-linear finite element reliability analysis of steel plane frames with initial imperfections. Journal of Civil Engineering and Management, 18 (1), pp.81-90 (10 p). ISSN 1392-3730, DOI: 10.3846/13923730.2012.655306, Taylor and Francis Inc. (2012).
DOI: 10.3846/13923730.2012.655306
Google Scholar
[6]
Kralik, J., Nonlinear probabilistic analysis of the reinforced concrete structure failure of a nuclear power plant considering degradation effects. Applied Mechanics and Materials, Vols. 249-250, pp.1087-1098 (12 p). ISSN 1660-9336, ISBN 978-303785557-7, DOI: 10.4028/www.scientific.net/AMM.249-250.1087, Trans Tech Publications (2013).
DOI: 10.4028/www.scientific.net/amm.249-250.1087
Google Scholar
[7]
Krejsa, M., Probabilistic Calculation of Fatigue Crack Progression Using FCProbCalc Code: paper #3. Transactions of the VSB - Technical University of Ostrava: Construction Series [online]. Vol. 12, Issue 1, pp.1-11 (11 p). ISSN 1804-4824 (Online); ISSN 1213-1962 (Print). DOI: 10.2478/v10160-012-0003-9, Warsaw, Poland: Versita (2012).
DOI: 10.2478/v10160-012-0003-9
Google Scholar
[8]
Krejsa, M., Stochastic Modeling of Fatigue Crack Progression using the DOProC Method: Paper 113. In: Proceedings of the 11th International Conference on Computational Structures Technology, Dubrovnik, pp.1-18 (18 p). ISBN 978-1-905088-54-6, ISSN 1759-3433. DOI: 10.4203/ccp.99.113, Civil-Comp Press (2012).
DOI: 10.4203/ccp.99.113
Google Scholar
[9]
Krejsa, M., Janas, P. and V. Krejsa, Direct Optimized Probabilistic Calculation. In: Recent Advances in Systems Science & Mathematical Modeling: Proceedings of the 3rd International Conference on Mathematical Models for Engineering Science (MMES '12), pp.216-221 (6 p). ISBN 978-1-61804-141-8, Paris, France: WSEAS Press (2012).
Google Scholar
[10]
Krejsa, M., Inspection Based Probabilistic Modeling of Fatigue Crack Progression. In: Recent Advances in Mechanical Engineering & Automatic Control: Proceedings of the 3rd European Conference of Mechanical Engineering (ECME' 12), pp.104-109 (6 p). ISBN 978-1-61804-142-5, Paris, France: WSEAS Press (2012).
DOI: 10.1016/j.proeng.2016.02.025
Google Scholar
[11]
Krejsa, M., Janas, P. and R. Cajka, Using DOProC Method in Structural Reliability Assessment. Applied Mechanics and Materials: Mechatronics and Applied Mechanics II. Vols. 300 - 301, pp.860-869 (10 p). ISSN 1662-7482, DOI: 10.4028/www.scientific.net/AMM.300-301.860, Trans Tech Publications (2013).
DOI: 10.4028/www.scientific.net/amm.300-301.860
Google Scholar
[12]
Krivy, V. and L. Fabian, Calculation of corrosion losses on weathering steel structures. Applied Mechanics and Materials, Vol. 188, pp.177-182 (6 p). ISSN 1660-9336, ISBN 978-303785452-5, DOI: 10.4028/www.scientific.net/AMM.188.177, Trans Tech Publications (2012).
DOI: 10.4028/www.scientific.net/amm.188.177
Google Scholar
[13]
Lokaj, A., Vavrusova, K. and E. Rykalova, Application of laboratory tests results of dowel joints in cement-splinter boards VELOX into the fully probabilistic methods (SBRA method). Applied Mechanics and Materials, Vol. 137, pp.95-99 (5 p). ISSN 1660-9336, ISBN 978-303785291-0, DOI: 10.4028/www.scientific.net/AMM.137.95, Trans Tech Publications (2012).
DOI: 10.4028/www.scientific.net/amm.137.95
Google Scholar
[14]
Paris, P. C. and F. Erdogan, A Critical Analysis of crack propagation laws, Journal of Basic Engineering, ASME, Vol. 85, pp.528-534 (7 p) (1960).
DOI: 10.1115/1.3656902
Google Scholar
[15]
Straub, D. and A. Der Kiureghian, Bayesian Network Enhanced with Structural Reliability Methods: Application, Journal of Engineering Mechanics, vol. 136, issue 10, p.1259–1270 (12 p), DOI: 10.1061/(ASCE)EM.1943-7889.0000170, Trans. ASCE (2010).
DOI: 10.1061/(asce)em.1943-7889.0000170
Google Scholar