Computational Modelling of Brittle Failure in Polycrystalline Materials Using Cohesive-Frictional Grain-Boundary Elements

Article Preview

Abstract:

A 3D grain-level formulation for the study of brittle failure in polycrystalline microstructures is presented. The microstructure is represented as a Voronoi tessellation and the boundary element method is used to model each crystal of the aggregate. The continuity of the aggregate is enforced through suitable conditions at the intergranular interfaces. The grain-boundary model takes into account the onset and evolution of damage by means of an irreversible linear cohesive law, able to address mixed-mode failure conditions. Upon interface failure, a non-linear frictional contact analysis is introduced for addressing the contact between micro-crack surfaces. An incremental-iterative algorithm is used for tracking the micro-degradation and cracking evolution. A numerical test shows the capability of the formulation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 577-578)

Pages:

233-236

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Crocker, P.E.J. Flewitt, and G.E. Smith: Int Mater Rev, Vol. 50(2), (2005), p.99.

Google Scholar

[2] S. Nemat-Nasser, M. Hori: Micromechanics: overall properties of heterogeneous materials (North-Holland, Elsevier, The Netherlands, 1999)

DOI: 10.1016/b978-0-444-89881-4.50004-9

Google Scholar

[3] I. Benedetti, M. H. Aliabadi: Comput Mater Sci, Vol. 67, (2013), p.249.

Google Scholar

[4] T.I. Zohdi and P. Wriggers: An introduction to computational micromechanics, (Springer, Berlin, 2005).

Google Scholar

[5] H. D. Espinosa, P. D. Zavattieri: Mech Mater, Vol. 35, (2003), p.333.

Google Scholar

[6] I. Simonovski, L. Cizelj: J Nucl Mater, Vol. 414, (2011), p.243.

Google Scholar

[7] M.H. Aliabadi, The boundary element method: applications in solids and structures, (John Wiley & Sons Ltd, England, 2002).

Google Scholar

[8] G. K. Sfantos, M. H. Aliabadi: Int J Numer Meth Eng, Vol. 69, (2007), p.1590.

Google Scholar

[9] S. Kumar, S. K. Kurtz, J. R. Banavar, M. G. Sharma: J Stat Phys, Vol. 67, (1992), p.523.

Google Scholar

[10] R. B. Wilson, T. A. Cruse: Int J Numer Meth Eng, Vol. 12, (1978), p.1383.

Google Scholar

[11] O. Schenk, K. Gartner: Future Gener Comp Sy, Vol. 20, (2004), p.475.

Google Scholar

[12] ASTM E112-10. ASTM International. DOI: 10.1520/E0112-10, (2010).

Google Scholar

[13] V. Mallardo: Int J Fracture, Vol. 157(1-2), (2009), p.13.

Google Scholar

[14] A. Alaimo, A. Milazzo, C. Orlando: CMES-Comp Model Eng, Vol. 36(1), (2008), p.23.

Google Scholar