Nano-Iron Oxides Used for Environmental Applications

Article Preview

Abstract:

The paper emphasizes the importance of use the nano-iron oxides as treatment materials for wastewaters decontamination, having in mind the size of these compounds and specific surface area suitable for retaining toxic metals such as chromium or cadmium presented as major pollutants for industrial wastewaters. Also, the magnetic properties of the nano-iron oxides offer the possibility of a fast removal of these from the system, after wastewaters treatment. The obtaining of some core-shell composites with nano-iron oxides as core represent an advantage because of the dissolving tendency of the nano-iron oxides under acidic conditions, the situation being common to the industrial wastewaters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Burzo, M. M. Codescu, W. Kappel, E. Helerea, Magnetic materials for technical applications, J. Optoelectron. Adv. Mater. 11 (2009) 229 - 237.

Google Scholar

[2] G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip, B. Raj, Effect of Digestion Time and Alkali Addition Rate on the Physical Properties of Magnetite Nanoparticles, Materials Chemistry and Physics 103 (2007) 168 - 175.

DOI: 10.1016/j.matchemphys.2007.02.011

Google Scholar

[3] W. Luo, S.R. Nagel, T.F. Rosenbaum, R.E. Rosensweig, Dipole interactions with random anisotropy in a frozen ferrofluid, Phys. Rev. Lett. 67 (1991) 2721 - 2724.

DOI: 10.1103/physrevlett.67.2721

Google Scholar

[4] K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy , Nat. Mater. 2 (2003) 88 - 91.

DOI: 10.1038/nmat811

Google Scholar

[5] S. Yang, P. Zong, X. Ren, Q. Wang, X. Wang, Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4-Humic acid magnetic nanoparticles, ACS Applied Materials and Interfaces, 4, (2012) 6891-6900

DOI: 10.1021/am3020372

Google Scholar

[6] S. Komarneni, W. Hu, Y. Dong Noh, A.Van Orden, S. Feng, C. Wei, H. Pang , F. Gao, Q. Lu, H. Katsuki, Magnetite syntheses from room temperature to 150 C with and without microwaves, Ceramics International 38, 2012, 2563–2568

DOI: 10.1016/j.ceramint.2011.11.027

Google Scholar

[7] J. Jia, J.C. Yu, X.-M. Zhu, K. M. Chan, Y.-X. J. Wang , Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe, Journal of Colloid and Interface Science 379 (2012) 1–7

DOI: 10.1016/j.jcis.2012.04.035

Google Scholar

[8] M. Kawashita, K. Kawamura, Z. Li, PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer, Acta Biomaterialia, 6 (2010) 3187–3192

DOI: 10.1016/j.actbio.2010.02.047

Google Scholar

[9] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. Metzler-Nolte, K. Tohji, J. Balachandran Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 323 (2011) 1216–1222, Proceedings of 12th International Conference on Magnetic Fluid, Edited By H. Yamaguchi, S. Kamiyama and B. Jeyadevan

DOI: 10.1016/j.jmmm.2010.11.009

Google Scholar

[10] M. Kawashita, M. Tanaka, T. Kokubo, Y. Inoue, T. Yao, S.Hamada, T. Shinjo, Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer Biomaterials, 26 (2005) 2231-2238

DOI: 10.1016/j.biomaterials.2004.07.014

Google Scholar

[11] M. Hasegawa, S . Hokkoku, US Patent No. 4,101,435, (1978).

Google Scholar

[12] W. Xinchao, R.C. Viadero Jr., K.M. Buzby, Recovery of iron and aluminum from acid mine drainage by selective precipitation, Environ. Eng. Sci. 22 (2005) 745–755.

DOI: 10.1089/ees.2005.22.745

Google Scholar

[13] T. Kawaguchi,T. Hanaichi, M. Hasegawa, S. Maruno, Dextran-magnetite complex: conformation of dextran chains and stability of solution, J. Mater. Sci. : Mater. Med. 12 (2001) 121-127.

Google Scholar

[14] T. Kawaguchi, M. Hasegawa. Structure of dextran-magnetite complex: relation between conformation of dextran chains covering core and its molecular weight. J. Mater. Sci.: Mater. Med. 11 (2000) 31 - 5.

Google Scholar

[15] M.A. Legodi, D. de Waal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes and Pigments 74 (2007) 161-168.

DOI: 10.1016/j.dyepig.2006.01.038

Google Scholar

[16] N. Pahimanolis, A-H. Vesterinen, J. Rich, J. Seppala, Modification of dextran using click-chemistry approach in aqueous media, Carbohydrate Polymers 82 (2010).78–82.

DOI: 10.1016/j.carbpol.2010.04.025

Google Scholar

[17] Z. Xia, G. Wang, K. Tao, J. Li, Preparation of magnetite–dextran microspheres by ultrasonication Journal of Magnetism and Magnetic Materials, 293 (2005) 182-186

DOI: 10.1016/j.jmmm.2005.01.059

Google Scholar

[18] J. Dinga, K. Tao, J. Li, S. Song, K. Sun, Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles, Colloids and Surfaces B: Biointerfaces 79 (2010) 184–190

DOI: 10.1016/j.colsurfb.2010.03.053

Google Scholar