[1]
F. Baino, C. Vitale-Brovarone. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res A 97 (2011) 514–535.
DOI: 10.1002/jbm.a.33072
Google Scholar
[2]
R. Langer, J.P. Vacanti. Tissue engineering, Science 260 (1993) 920–926.
Google Scholar
[3]
D.W. Hutmacher. Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) 2529–2543.
DOI: 10.1016/s0142-9612(00)00121-6
Google Scholar
[4]
F. Gervaso, F. Scalera, S.K. Padmanabhan, A. Sannino, A. Licciulli, High‐Performance hydroxyapatite scaffolds for bone tissue engineering applications, J. Appl. Ceram. Technol, 9 (2012) 507–516.
DOI: 10.1111/j.1744-7402.2011.02662.x
Google Scholar
[5]
S.K. Padmanabhan, F. Gervaso, M. Carrozzo, F. Scalera, A. Sannino, A. Licciulli, Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering, Ceram. Int. 39 (2013) 619-627.
DOI: 10.1016/j.ceramint.2012.06.073
Google Scholar
[6]
J.E. Devin, M.A. Attawia, C.T. Laurencin, Three-dimensional degradable porous polymer–ceramic matrices for use in bone repair. J. Biomater. Sci. Polymer, 8 (1996) 661–669.
DOI: 10.1163/156856296x00435
Google Scholar
[7]
K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss, In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47 (1999) 324–335.
DOI: 10.1002/(sici)1097-4636(19991205)47:3<324::aid-jbm6>3.0.co;2-y
Google Scholar
[8]
V. Maquet, A.R. Boccaccini, L. Pravata, I. Notingher, R. Jérôme, Porous poly (ahydroxyacid)/ bioglass, composite scaffolds for bone tissue engineering. I. Preparation and in vitro characterisation. Biomaterials 25 (2004) 4185–4194.
DOI: 10.1016/j.biomaterials.2003.10.082
Google Scholar
[9]
X.Y. Shen, L. Chen, X. Cai, T. Tong, H. Tong, J.M. Hu, A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity, J. Mater. Sci. Mater. Med. 22 (2011) 299–305.
DOI: 10.1007/s10856-010-4199-x
Google Scholar
[10]
Y. Miyamato, K.I. Shikawa, Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases, Biomaterials, 19 (1998) 707–715.
DOI: 10.1016/s0142-9612(97)00186-5
Google Scholar
[11]
L.H. Li , K.P. Kommareddy , C. Pilz , C.R. Zhou , P. Fratzl a, I. Manjubala, In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres, Acta. Biomater. 6 (2010) 2525–2531.
DOI: 10.1016/j.actbio.2009.03.028
Google Scholar
[12]
K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique, Bull. Mater. Sci. 32 (2009) 465-470.
DOI: 10.1007/s12034-009-0069-x
Google Scholar
[13]
K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, Pressureless sintering of nanocrystalline hydroxyapatite at different temperatures, Met. Mat. Int. 16 (2010) 605-611.
DOI: 10.1007/s12540-010-0813-1
Google Scholar
[14]
K.P. Sanosh, M. C Chu, A. Balakrishnan , Y.J. Lee, T.N. Kim, S.J. Cho, Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition, Curr. Appl. Phys. 9 (2009) 1459–1462.
DOI: 10.1016/j.cap.2009.03.024
Google Scholar