Triple Correlation Technique for Damage Detection in Composite Materials

Article Preview

Abstract:

Over the last few decades a number of different techniques have been developed for impact damage detection in composite structures. The most frequently used methods in Non-Destructive Testing (NDT) are: ultrasonic testing, acoustics emission, X-ray and visual inspection. These methods are quite effective but often require expensive equipment, a large number of transducers or highly qualified staff. Additionally, these techniques are used locally. Therefore monitoring of large structures in many cases is very difficult or even impossible. Recent years have seen many new developments mostly free from these limitations. This paper investigates the triple correlation technique for impact damage detection in composite structures. The method correlates fundamental and higher harmonics of signal vibration response

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-317

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Klepka, A., Staszewski, W.J., Jenal, R.B., Szwedo, M., Uhl, T., Iwaniec, J. Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring. 2012, Vol. 11,197-211.

DOI: 10.1177/1475921711414236

Google Scholar

[2] Klepka, A., Staszewski,W. J., Uhl, T., Aymerich, F. Sensor location analysis for nonlinear-acoustics-based damage detection in composite structures. Proc. Health Monitoring of Structural and Biological Systems.2012. p.8348.

DOI: 10.1117/12.915282

Google Scholar

[3] Iwaniec, J., Uhl, T., Staszewski, W. J., Klepka, A. Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dynamics. 2012, Volume: 70 Issue: 1 Pages: 125-140.

DOI: 10.1007/s11071-012-0436-9

Google Scholar

[4] Staszewski W.J., Parsons, Z. Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures. Smart Mater Struc. 2006, 15, p.1110–1118.

DOI: 10.1088/0964-1726/15/4/025

Google Scholar

[5] Van Den Abeele, K., Carmeliet,T., TenCate, J.A., Johnson, P.A. Nonlinear elastic wave spectroscopy (NEWS) technique to discern material damage. Part II: single mode nonlinear acoustic spectroscopy. Rev Prog QNDE. 12, 2000, 1, p.31–42.

DOI: 10.1080/09349840009409647

Google Scholar

[6] Visscher, J. De., Van Den Abeele, K. Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cement Concrete Res. 30, 2000, 9, p.1453–1464.

DOI: 10.1016/s0008-8846(00)00329-x

Google Scholar

[7] Antonets, V.A., Donskoy, D.M., Sutin, A.M. Nonlinear-vibro diagnostics of flaw in multilayered structures. Compos Mater. 1986, 15, p.934–937.

Google Scholar

[8] .] Morris, W. L., BuckO., Inman R. V. Acoustic harmonic generation due to fatigue damage in high-strength aluminum. Journal of Applied Physics. 1979, Vol. 50, p.6737.

DOI: 10.1063/1.325917

Google Scholar

[9] Johnson, P. The new wave in acoustic testing. Materials World, the J. Inst. Materials. 1999, Vol. 7, pp.544-546.

Google Scholar

[10] Worden, K., Tomlinson, G.R. Nonlinearity in Structural Dynamics. Brystol  : Institute of Physics Publishing, 2001.

Google Scholar

[11] Zaitsev, V.Y., Gusev, V.E., Castagnede, B. Luxembourg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 2002, Vol. 89, p.105502.

DOI: 10.1103/physrevlett.89.105502

Google Scholar

[12] Korshak B.A., Solodov, I., Ballad E.M. DC effects, sub-harmonics, stochasticity and ''memory'' for contact acoustic non-linearity. Ultrasonics. 2002, Vol. 40, pp.707-713.

DOI: 10.1016/s0041-624x(02)00241-x

Google Scholar

[13] Zaitsev, V. Y., Gusev, V., Castagnède, B. Observation of the "Luxemburg-Gorky effect" for elastic waves. Ultrasonics. 2002, Vol. 40, pp.627-631.

DOI: 10.1016/s0041-624x(02)00187-7

Google Scholar

[14] Pieczonka, L., Staszewski, W.J., Aymerich, F., Uhl, T. Analysis of nonlinear vibro-acoustic wave modulations used for impact damage detection in composite structures. Structural health monitoring 2012 : proceedings of the sixth European workshop. 2012, p: 295–301.

DOI: 10.1002/stc.2063

Google Scholar

[15] Strączkiewicz, M. Novel technique, the Triple Correlation based on the chirp-Fourier transform for damage detection. MSc Thesis. 2011.

Google Scholar

[16] Klepka, A. Staszewski, W.J., Uhl, T., Di Maio, D., Scarpa, F. Impact Damage Detection in Composite Chiral Sandwich Panels. Key Engineering Materials. 2012, Vol. 518, p: 160-167.

DOI: 10.4028/www.scientific.net/kem.518.160

Google Scholar

[17] Delsanto, P.P. Universality of nonclassical nonlinearity. New York : Springer, 2007.

Google Scholar

[18] Staszewski W. J., Ruztamreen Bin Jenal, Klepka A.,Szwedo M., Uhl T. A review of Laser Doppler Vibrometry for structural health monitoring applications, Key Engineering Materials, 2012 vol. 518 1–15

DOI: 10.4028/www.scientific.net/kem.518.1

Google Scholar

[19] Klepka, A. Staszewski, W. J.; Aymerich, Uhl T., Sensor Location Analysis for Nonlinear Acoustics Based Damage Detection in Composite Structures, 212, HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2012 Book Series: Proceedings of SPIE Volume: 8348 Article Number: 83482G.

DOI: 10.1117/12.915282

Google Scholar

[20] Klepka A., Ruztamreen B. Jenal, Staszewski W.J, Uhl T., Fatigue crack detection using nonlinear acoustics and laser vibrometry, ICSV 18 : 18th International Congress on Sound & Vibration : 10–14 July 2011, Rio de Janeiro – Brazil.

Google Scholar

[21] Jenal R.B., Staszewski W. J., Klepka A., Uhl T., Sensor location analysis for fatigue crack detection using nonlinear acoustics, Structural health monitoring 2011 : condition-based maintenance and intelligent structures : proceedings of the 8th international workshop on Structural health monitoring : Stanford, September 13–15, 2011, Vol. 2, 1359–1367

DOI: 10.1177/1475921711414236

Google Scholar

[22] Webb, A.Statistical Pattern Recognition 2nd edition. New York : Oxford University Press Inc, 2002.

Google Scholar

[23] Young, T., Fu, K.S. Handbook of pattern recognition and image processing. New York : Academic Press, 1986. .

Google Scholar