Instrumental Measurement and Analysis of Pharmaceutical Tablet Texture — A Review

Article Preview

Abstract:

Textural property is one of the most important attributes of pharmaceutical tablet. From the perspective of destructive and non-destructive methods, this article reviews various approaches of tablet texture measurement and analysis. It is indicated that researchers usually utilize mechanical testers and optical and acoustic instruments to determine texture properties of hardness,tensile strength, friability and porosity of tablet, mainly aiming to characterize the damage and abrasive resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

348-353

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C.O. Villanova, E. Ayres, R.L. Oréfice, Design of prolonged release tablets using new solid acrylic excipients for direct compression, Europ. J. Pharm. Biopharm. 79 (2011) 664–673.

DOI: 10.1016/j.ejpb.2011.07.011

Google Scholar

[2] A.B. Joshi, S. Patel, A.M. Kaushal, A.K. Bansal, Compaction studies of alternate solid forms of celecoxib, Advanced Powder Technology. 21 (2010) 452–460.

DOI: 10.1016/j.apt.2010.01.006

Google Scholar

[3] F. Podczeck, Methods for the practical determination of the mechanical strength of tablets — From empiricism to science, International Journal of Pharmaceutics. 436 (2012) 214–232.

DOI: 10.1016/j.ijpharm.2012.06.059

Google Scholar

[4] L. Chen, U.L. Opara, Texture measurement approaches in fresh and processed foods — A review, Food Research International. 51 (2013) 823–835.

DOI: 10.1016/j.foodres.2013.01.046

Google Scholar

[5] F. Fichtner, A, Rasmuson, G. Alderborn, Particle size distribution and evolution in tablet structure during and after compaction, International Journal of Pharmaceutics. 292 (2005) 211–225.

DOI: 10.1016/j.ijpharm.2004.12.003

Google Scholar

[6] I. Stoltenberg, J. Breitkreutz, Orally disintegrating mini-tablets (ODMTs) – A novel solid oral dosage form for paediatric use, Europ. J. Pharmaceutics and Biopharmaceutics. 78 (2011) 462–469.

DOI: 10.1016/j.ejpb.2011.02.005

Google Scholar

[7] A.S. Narang, V.M. Rao, H. Guo, J. Lu, D.S. Desai, Effect of force feeder on tablet strength during compression, International Journal of Pharmaceutics. 401 (2010) 7–15.

DOI: 10.1016/j.ijpharm.2010.08.027

Google Scholar

[8] A. Gryczke, S. Schminke, M. Maniruzzaman, J. Beck, D. Douroumis, Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion, Colloids and Surfaces B: Biointerfaces. 86 (2011).

DOI: 10.1016/j.colsurfb.2011.04.007

Google Scholar

[9] Y. Okuda, Y. Irisawa, K. Okimoto, et al., A new formulation for orally disintegrating tablets using a suspension spray-coating method, International Journal of Pharmaceutics. 382 (2009) 80–87.

DOI: 10.1016/j.ijpharm.2009.08.010

Google Scholar

[10] R.M. Pabari, Z. Ramtoola, Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets, International Journal of Pharmaceutics. 430 (2012).

DOI: 10.1016/j.ijpharm.2012.03.021

Google Scholar

[11] S. Mehta, T. De Beer, J.P. Remon, et al., Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules. Int. J. Pharm. 422 (2012) 310–317.

DOI: 10.1016/j.ijpharm.2011.11.017

Google Scholar

[12] A. Hegedus, K. Pintye-Hodi, Comparison of the effects of different drying techniques on properties of granules and tablets made on a production scale, Int. J. Pharm. 330 (2007) 99–104.

DOI: 10.1016/j.ijpharm.2006.09.001

Google Scholar

[13] F. AlHusban, Y. Perrie, A.R. Mohammed, Formulation of multiparticulate systems as lyophilised orally disintegrating tablets, Europ. J. Pharmaceutics and Biopharmaceutics. 79 (2011) 627–634.

DOI: 10.1016/j.ejpb.2011.05.014

Google Scholar

[14] S.P. Simonaho, T.A. Takala, M. Kuosmanen, J. Ketolainen, Ultrasound transmission measurements for tensile strength evaluation of tablets, Int. J. Pharm. 409 (2011) 104–110.

DOI: 10.1016/j.ijpharm.2011.02.033

Google Scholar

[15] P. García-Triñanes, M. Bao, J.J. Casares, T. Ittershagen, M. Morgeneyer, Study on the mechanical strength of primary carbonate tablets, Powder Technology. 204 (2010) 124–130.

DOI: 10.1016/j.powtec.2010.07.027

Google Scholar

[16] F. Fichtner, A.C. Rasmuson, E.M. Alander, et al., Effect of preparation method on compactability of paracetamol granules and agglomerates, Int. J. Pharmaceutics. 336 (2007) 148–158.

DOI: 10.1016/j.ijpharm.2006.11.046

Google Scholar

[17] M.G. Herting, P. Kleinebudde, Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation, Europ. J. Pharm. Biopharm. 70 (2008) 372–379.

DOI: 10.1016/j.ejpb.2008.04.003

Google Scholar

[18] J. Vercruysse, D.C. Díaz, E. Peeters, et al., Continuous twin screw granulation: Influence of process variables on granule and tablet quality, Europ. J. Pharm. Biopharm. 82 (2012) 205–211.

DOI: 10.1016/j.ejpb.2012.05.010

Google Scholar

[19] L. Farber, K.P. Hapgood, J.N. Michaels, et al., Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression, Int. J. Pharm. 346 (2008) 17–24.

DOI: 10.1016/j.ijpharm.2007.06.022

Google Scholar

[20] M. Dumarey, H. Wikström, M. Fransson, et al., Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction, International Journal of Pharmaceutics. 416 (2011).

DOI: 10.1016/j.ijpharm.2011.06.018

Google Scholar

[21] N. Kottala, A. Abebe, O. Sprockel, et al., Influence of compaction properties and interfacial topography on the performance of bilayer tablets, Int. J. Pharmaceutics. 436 (2012) 171–178.

DOI: 10.1016/j.ijpharm.2012.05.026

Google Scholar

[22] A. Siddiqui, S. Nazzal, Measurement of surface color as an expedient QC method for the detection of deviations in tablet hardness, International Journal of Pharmaceutics. 341 (2007) 173–180.

DOI: 10.1016/j.ijpharm.2007.04.006

Google Scholar

[23] S. Lakio, S. Siiriä, H. Räikkönen, et al., New insights into segregation during tabletting, International Journal of Pharmaceutics. 397 (2010) 19–26.

DOI: 10.1016/j.ijpharm.2010.06.041

Google Scholar

[24] Z. Rahman, A.S. Zidan, M.A. Khan, Risperidone solid dispersion for orally disintegrating tablet: Its formulation design and non-destructive methods of evaluation, Int. J. Pharm. 400 (2010) 49–58.

DOI: 10.1016/j.ijpharm.2010.08.025

Google Scholar

[25] I. Akseli, C. Cetinkaya, Air-coupled non-contact mechanical property determination of drug tablets, International Journal of Pharmaceutics. 359 (2008) 25–34.

DOI: 10.1016/j.ijpharm.2008.03.020

Google Scholar