[1]
Kok, M. (2005). Production and mechanical properties of 〖Al〗_2 O_3 particle-reinforced 2024 aluminum alloy composites, Journal of Materials Processing Technology, 161 (2005), pp.381-387.
DOI: 10.1016/j.jmatprotec.2004.07.068
Google Scholar
[2]
D. Alexopoulos, Nikolaos., J. Dalakouras, Charis., Skarvelis, Panagiotis. And K. Kourkoulis, Stavros. (2012).
Google Scholar
[3]
Du Quesnay, D.L., Underhill, P.R. And Britt, H.J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading, International Journal of Fatigue, 25, (2003) pp.371-377.
DOI: 10.1016/s0142-1123(02)00168-8
Google Scholar
[4]
Xue, Y., McDowell, D.L., Horstemeyer, M.F., Dale, M.H. And Jordon, J.B. Microstructure- based multistage fatigue modeling of aluminum alloy 7075-T651, Engineering Fracture Mechanics, 74, pp.2810-2823.
DOI: 10.1016/j.engfracmech.2006.12.031
Google Scholar
[5]
Rodopoulos, C.A., Choi, J. -H., De los Rios, E.R. And Yates, J.R., Stress ratio and the fatigue damage map- Part II: The 2024-T351 aluminum alloy, International Journal of Fatigue, 26, (2004), pp.747-752.
DOI: 10.1016/j.ijfatigue.2003.10.018
Google Scholar
[6]
Morrissey, R.J., McDowell, D.L. And Nicholas, T. Frequency and stress ratio effects in high cycle fatigue of Ti-6Al-4V, International Journal of Fatigue, 21, (1999), pp.679-685.
DOI: 10.1016/s0142-1123(99)00030-4
Google Scholar
[7]
Kujawski, Daniel. Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys, International Journal of Fatigue, 23, (2001), pp.95-102.
DOI: 10.1016/s0142-1123(00)00085-2
Google Scholar
[8]
Zhao, T.W., Zhang, J. and Jiang, Y. A study of fatigue crack growth of 7075-T651 aluminum alloy, International Journal Of Fatigue, 30, (2008), pp.1169-1180.
DOI: 10.1016/j.ijfatigue.2007.09.006
Google Scholar
[9]
Zhang, J., He, X.D. And Du, S.Y. Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method, International Journal of Fatigue, 27, (2005), pp.1314-1318.
DOI: 10.1016/j.ijfatigue.2005.06.010
Google Scholar
[10]
Ding, J., Hall, R. And Byrne, J. Effects of stress ratio and temperature on fatigue crack growth in a Ti-6Al-4V alloy, International Journal of Fatigue, 27, (2005), pp.1551-1558.
DOI: 10.1016/j.ijfatigue.2005.06.007
Google Scholar
[11]
ASTM International,. Standard Test Method for Measurement of Fatigue Crack Growth E647-11. (2011), United States.
Google Scholar
[12]
Zengliang, G., Baoxiang, Q. And Xiaogui, W (2008) A new method to fatigue initiation and crack growth prediction, Journal of Pressure Equipment and System, 6, pp.139-146.
Google Scholar
[13]
Ritchie, R.O. Mechanism of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture, 100, (1999), pp.55-83.
Google Scholar
[14]
Wang, Xiaogui., Yin, Donghui., Xu, Feng., Qiu, BaoXiang. And Gao, Zengliang. Fatigue crack initiation and growth of 16MnR steel with stress ratio effects, International Journal of Fatigue, 35, (2012), pp.10-15.
DOI: 10.1016/j.ijfatigue.2011.05.007
Google Scholar
[15]
Jogi, B.F., Brahmankar, P.K., Nanda, V.S. And Prasad, R.C., Some studies on fatigue crack growth rate of aluminum alloy 6061, Journal of Material Processing Technology, 201, (2008), pp.380-384.
DOI: 10.1016/j.jmatprotec.2007.11.302
Google Scholar
[16]
Jung-Kyu, Kim. And Dong-Shuk, Shim , The variation in fatigue crack growth due to the thickness effect, International Journal of Fatigue, 22, (2000), pp.611-618.
DOI: 10.1016/s0142-1123(00)00032-3
Google Scholar