Preparation of Biodegradable Poly(lactic Acid) Electrospun Membrane with Decreased Pore Size by Post Heat Treatment

Abstract:

Article Preview

Environment-friendly membranes were fabricated from poly (lactic acid) (PLA) via the electrospinning technique. PLA is selected due to its biodegradability and thermoplastic. Firstly, the electrospinning parameters that affect the membrane structure and fibers morphology were identified. These include the polymer solution concentration, flow rate and salt additive. It was found that low concentration lead to smaller fiber size but with beads, and lower flow rates leading to thinner and uniform fibers, while salt additives limited the formation of beads. It was found that hot pressing only is preferred from the view of small pore size, large porosity and high contact angle.

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Edited by:

Mohd Mustafa Al Bakri Abdullah, Liyana Jamaludin, Alida Abdullah, Rafiza Abd Razak and Kamarudin Hussin

Pages:

260-269

Citation:

L. Li et al., "Preparation of Biodegradable Poly(lactic Acid) Electrospun Membrane with Decreased Pore Size by Post Heat Treatment", Key Engineering Materials, Vols. 594-595, pp. 260-269, 2014

Online since:

December 2013

Export:

Price:

$41.00

[1] Gross, R.A. and B. Kalra, Biodegradable polymers for the environment. Science, 2002. 297(5582): pp.803-807.

[2] Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004. 4(9): pp.835-864.

DOI: https://doi.org/10.1002/mabi.200400043

[3] Patel, M., et al., Life‐cycle Assessment of Bio‐based Polymers and Natural Fiber Composites. Biopolymers Online, (2003).

[4] La Mantia, F. and M. Morreale, Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 2011: p.579–588.

DOI: https://doi.org/10.1016/j.compositesa.2011.01.017

[5] Vink, E.T.H., et al., Applications of life cycle assessment to NatureWorks (TM) polylactide (PLA) production. Polymer Degradation and Stability, 2003. 80(3): pp.403-419.

DOI: https://doi.org/10.1016/s0141-3910(02)00372-5

[6] Gupta, B., N. Revagade, and J. Hilborn, Poly (lactic acid) fiber: An overview. Progress in polymer science, 2007. 32(4): pp.455-482.

DOI: https://doi.org/10.1016/j.progpolymsci.2007.01.005

[7] Schmack, G., et al., Biodegradable fibers of poly (L‐lactide) produced by high‐speed melt spinning and spin drawing. Journal of applied polymer science, 1999. 73(14): pp.2785-2797.

DOI: https://doi.org/10.1002/(sici)1097-4628(19990929)73:14<2785::aid-app1>3.0.co;2-l

[8] Cicero, J.A. and J.R. Dorgan, Physical properties and fiber morphology of poly (lactic acid) obtained from continuous two-step melt spinning. Journal of Polymers and the Environment, 2001. 9(1): pp.1-10.

[9] Schmack, G., et al., High‐speed melt spinning of various grades of polylactides. Journal of applied polymer science, 2004. 91(2): pp.800-806.

DOI: https://doi.org/10.1002/app.13170

[10] Hufenus, R., et al., Biodegradable Bicomponent Fibers from Renewable Sources: Melt‐Spinning of Poly (lactic acid) and Poly [(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)]. Macromolecular Materials and Engineering, 2012: pp.75-84.

DOI: https://doi.org/10.1002/mame.201100063

[11] Leenslag, J. and A. Pennings, High-strength poly (l-lactide) fibres by a dry-spinning/hot-drawing process. Polymer, 1987. 28(10): pp.1695-1702.

DOI: https://doi.org/10.1016/0032-3861(87)90012-7

[12] Kim, K., et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly (, -lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003. 24(27): pp.4977-4985.

DOI: https://doi.org/10.1016/s0142-9612(03)00407-1

[13] Li, D., M.W. Frey, and A.J. Baeumner, Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of membrane science, 2006. 279(1): pp.354-363.

DOI: https://doi.org/10.1016/j.memsci.2005.12.036

[14] You, Y., et al., Thermal interfiber bonding of electrospun poly (l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): pp.1331-1333.

DOI: https://doi.org/10.1016/j.matlet.2005.11.022

[15] Xu, X., et al., Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006. 42(9): p.2081-(2087).

DOI: https://doi.org/10.1016/j.eurpolymj.2006.03.032

[16] Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 1995. 35(2-3): pp.151-160.

DOI: https://doi.org/10.1016/0304-3886(95)00041-8

[17] Huang, C., et al., Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006. 17: p.1558.

[18] Chen, H.C., C.H. Tsai, and M.C. Yang, Mechanical properties and biocompatibility of electrospun polylactide/poly (vinylidene fluoride) mats. Journal of Polymer Research, 2011. 18(3): pp.319-327.

DOI: https://doi.org/10.1007/s10965-010-9421-5

[19] Ma, M., et al., Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 2005. 38(23): pp.9742-9748.

DOI: https://doi.org/10.1021/ma0511189

[20] Ma, M., Nanostructured electrospun fibers: from superhydrophobicity to block copolymer self-assembly. Thesis, Massachusetts Institute of Technology, (2008).

[21] El-Bourawi, M., et al., A framework for better understanding membrane distillation separation process. Journal of membrane science, 2006. 285(1): pp.4-29.

DOI: https://doi.org/10.1016/j.memsci.2006.08.002

[22] Khayet, M., Membranes and theoretical modeling of membrane distillation: A review. Advances in colloid and interface science, 2011. 164(1): pp.56-88.

DOI: https://doi.org/10.1016/j.cis.2010.09.005

[23] Yang, F., et al., Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004. 25(10): p.1891-(1900).

DOI: https://doi.org/10.1016/j.biomaterials.2003.08.062

[24] Li, W.J., et al., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005. 26(6): pp.599-609.

DOI: https://doi.org/10.1016/j.biomaterials.2004.03.005

[25] Xie, J., et al., Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS nano, 2010: pp.5027-5036.

DOI: https://doi.org/10.1021/nn101554u

[26] Greiner, A., Medicinal Applications for Electrospun Nanofibers. Tissue Engineering, 2012. 9: p.1.

[27] Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004. 25(13): pp.2595-2602.

DOI: https://doi.org/10.1016/j.biomaterials.2003.09.043

[28] Ran, X., et al., Thermal and mechanical properties of blends of polylactide and poly (ethylene glycol‐co‐propylene glycol): Influence of annealing. Journal of applied polymer science, 2010. 116(4): p.2050-(2057).

DOI: https://doi.org/10.1002/app.31701

[29] Ramdhanie, L.I., et al., Thermal and mechanical characterization of electrospun blends of poly (lactic acid) and poly (glycolic acid). Polymer journal, 2006. 38(11): pp.1137-1145.

DOI: https://doi.org/10.1295/polymj.pj2006062

[30] Tan, E.P.S. and C. Lim, Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology, 2006. 17: p.2649.

DOI: https://doi.org/10.1088/0957-4484/17/10/034

[31] Cho, A.R., et al., Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. Journal of applied polymer science, 2011. 120(2): pp.752-758.

DOI: https://doi.org/10.1002/app.33262

[32] Kaur, S., et al., Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination, 2011. 279(1–3): pp.201-209.

DOI: https://doi.org/10.1016/j.desal.2011.06.009

[33] Lalia, B.S., et al., Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of membrane science, in press, 2012(0).

DOI: https://doi.org/10.1016/j.memsci.2012.10.061

[34] Li, L., R. Hashaikeh, and H.A. Arafat, Development of eco-efficient micro-porous membranes via the electrospinning and annealing of poly (lactic acid). Journal of membrane science, 2013. 436: pp.57-67.

DOI: https://doi.org/10.1016/j.memsci.2013.02.037

[35] Jena, A. and K. Gupta, Characterization of pore structure of filtration media. Fluid/Particle Separation Journal, 2002. 14(3): pp.227-241.

[36] Jena, A. and K. Gupta, Pore volume of nanofiber nonwovens. Int. Nonwovens J, 2005. 14(2): pp.25-30.

[37] Zong, X., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): pp.4403-4412.

DOI: https://doi.org/10.1016/s0032-3861(02)00275-6

[38] Liu, Y., et al., Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 2008. 57(4): pp.632-636.

[39] Tan, S., et al., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 2005. 46(16): pp.6128-6134.

DOI: https://doi.org/10.1016/j.polymer.2005.05.068

[40] Ramakrishna, S., An introduction to electrospinning and nanofibers2005: World Scientific Pub Co Inc.

[41] Rutledge, G.C., C.B. Mary, and C.L. Pai, Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics, 2011, Massachusetts Institute of Technology.

[42] Kaur, S., et al., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. Journal of membrane science, (2011).

[43] Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006. 7(10): pp.2796-2805.

DOI: https://doi.org/10.1021/bm060680j

[44] Eichhorn, S.J. and W.W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the royal society Interface, 2005. 2(4): pp.309-318.

DOI: https://doi.org/10.1098/rsif.2005.0039