Preparation of Biodegradable Poly(lactic Acid) Electrospun Membrane with Decreased Pore Size by Post Heat Treatment

Article Preview

Abstract:

Environment-friendly membranes were fabricated from poly (lactic acid) (PLA) via the electrospinning technique. PLA is selected due to its biodegradability and thermoplastic. Firstly, the electrospinning parameters that affect the membrane structure and fibers morphology were identified. These include the polymer solution concentration, flow rate and salt additive. It was found that low concentration lead to smaller fiber size but with beads, and lower flow rates leading to thinner and uniform fibers, while salt additives limited the formation of beads. It was found that hot pressing only is preferred from the view of small pore size, large porosity and high contact angle.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

260-269

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gross, R.A. and B. Kalra, Biodegradable polymers for the environment. Science, 2002. 297(5582): pp.803-807.

DOI: 10.1126/science.297.5582.803

Google Scholar

[2] Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004. 4(9): pp.835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[3] Patel, M., et al., Life‐cycle Assessment of Bio‐based Polymers and Natural Fiber Composites. Biopolymers Online, (2003).

Google Scholar

[4] La Mantia, F. and M. Morreale, Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 2011: p.579–588.

DOI: 10.1016/j.compositesa.2011.01.017

Google Scholar

[5] Vink, E.T.H., et al., Applications of life cycle assessment to NatureWorks (TM) polylactide (PLA) production. Polymer Degradation and Stability, 2003. 80(3): pp.403-419.

DOI: 10.1016/s0141-3910(02)00372-5

Google Scholar

[6] Gupta, B., N. Revagade, and J. Hilborn, Poly (lactic acid) fiber: An overview. Progress in polymer science, 2007. 32(4): pp.455-482.

DOI: 10.1016/j.progpolymsci.2007.01.005

Google Scholar

[7] Schmack, G., et al., Biodegradable fibers of poly (L‐lactide) produced by high‐speed melt spinning and spin drawing. Journal of applied polymer science, 1999. 73(14): pp.2785-2797.

DOI: 10.1002/(sici)1097-4628(19990929)73:14<2785::aid-app1>3.0.co;2-l

Google Scholar

[8] Cicero, J.A. and J.R. Dorgan, Physical properties and fiber morphology of poly (lactic acid) obtained from continuous two-step melt spinning. Journal of Polymers and the Environment, 2001. 9(1): pp.1-10.

Google Scholar

[9] Schmack, G., et al., High‐speed melt spinning of various grades of polylactides. Journal of applied polymer science, 2004. 91(2): pp.800-806.

DOI: 10.1002/app.13170

Google Scholar

[10] Hufenus, R., et al., Biodegradable Bicomponent Fibers from Renewable Sources: Melt‐Spinning of Poly (lactic acid) and Poly [(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)]. Macromolecular Materials and Engineering, 2012: pp.75-84.

DOI: 10.1002/mame.201100063

Google Scholar

[11] Leenslag, J. and A. Pennings, High-strength poly (l-lactide) fibres by a dry-spinning/hot-drawing process. Polymer, 1987. 28(10): pp.1695-1702.

DOI: 10.1016/0032-3861(87)90012-7

Google Scholar

[12] Kim, K., et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly (, -lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003. 24(27): pp.4977-4985.

DOI: 10.1016/s0142-9612(03)00407-1

Google Scholar

[13] Li, D., M.W. Frey, and A.J. Baeumner, Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of membrane science, 2006. 279(1): pp.354-363.

DOI: 10.1016/j.memsci.2005.12.036

Google Scholar

[14] You, Y., et al., Thermal interfiber bonding of electrospun poly (l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): pp.1331-1333.

DOI: 10.1016/j.matlet.2005.11.022

Google Scholar

[15] Xu, X., et al., Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006. 42(9): p.2081-(2087).

DOI: 10.1016/j.eurpolymj.2006.03.032

Google Scholar

[16] Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 1995. 35(2-3): pp.151-160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[17] Huang, C., et al., Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006. 17: p.1558.

Google Scholar

[18] Chen, H.C., C.H. Tsai, and M.C. Yang, Mechanical properties and biocompatibility of electrospun polylactide/poly (vinylidene fluoride) mats. Journal of Polymer Research, 2011. 18(3): pp.319-327.

DOI: 10.1007/s10965-010-9421-5

Google Scholar

[19] Ma, M., et al., Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 2005. 38(23): pp.9742-9748.

DOI: 10.1021/ma0511189

Google Scholar

[20] Ma, M., Nanostructured electrospun fibers: from superhydrophobicity to block copolymer self-assembly. Thesis, Massachusetts Institute of Technology, (2008).

Google Scholar

[21] El-Bourawi, M., et al., A framework for better understanding membrane distillation separation process. Journal of membrane science, 2006. 285(1): pp.4-29.

DOI: 10.1016/j.memsci.2006.08.002

Google Scholar

[22] Khayet, M., Membranes and theoretical modeling of membrane distillation: A review. Advances in colloid and interface science, 2011. 164(1): pp.56-88.

DOI: 10.1016/j.cis.2010.09.005

Google Scholar

[23] Yang, F., et al., Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004. 25(10): p.1891-(1900).

DOI: 10.1016/j.biomaterials.2003.08.062

Google Scholar

[24] Li, W.J., et al., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005. 26(6): pp.599-609.

DOI: 10.1016/j.biomaterials.2004.03.005

Google Scholar

[25] Xie, J., et al., Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS nano, 2010: pp.5027-5036.

DOI: 10.1021/nn101554u

Google Scholar

[26] Greiner, A., Medicinal Applications for Electrospun Nanofibers. Tissue Engineering, 2012. 9: p.1.

Google Scholar

[27] Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004. 25(13): pp.2595-2602.

DOI: 10.1016/j.biomaterials.2003.09.043

Google Scholar

[28] Ran, X., et al., Thermal and mechanical properties of blends of polylactide and poly (ethylene glycol‐co‐propylene glycol): Influence of annealing. Journal of applied polymer science, 2010. 116(4): p.2050-(2057).

DOI: 10.1002/app.31701

Google Scholar

[29] Ramdhanie, L.I., et al., Thermal and mechanical characterization of electrospun blends of poly (lactic acid) and poly (glycolic acid). Polymer journal, 2006. 38(11): pp.1137-1145.

DOI: 10.1295/polymj.pj2006062

Google Scholar

[30] Tan, E.P.S. and C. Lim, Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology, 2006. 17: p.2649.

DOI: 10.1088/0957-4484/17/10/034

Google Scholar

[31] Cho, A.R., et al., Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. Journal of applied polymer science, 2011. 120(2): pp.752-758.

DOI: 10.1002/app.33262

Google Scholar

[32] Kaur, S., et al., Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination, 2011. 279(1–3): pp.201-209.

DOI: 10.1016/j.desal.2011.06.009

Google Scholar

[33] Lalia, B.S., et al., Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of membrane science, in press, 2012(0).

DOI: 10.1016/j.memsci.2012.10.061

Google Scholar

[34] Li, L., R. Hashaikeh, and H.A. Arafat, Development of eco-efficient micro-porous membranes via the electrospinning and annealing of poly (lactic acid). Journal of membrane science, 2013. 436: pp.57-67.

DOI: 10.1016/j.memsci.2013.02.037

Google Scholar

[35] Jena, A. and K. Gupta, Characterization of pore structure of filtration media. Fluid/Particle Separation Journal, 2002. 14(3): pp.227-241.

Google Scholar

[36] Jena, A. and K. Gupta, Pore volume of nanofiber nonwovens. Int. Nonwovens J, 2005. 14(2): pp.25-30.

DOI: 10.1177/1558925005os-1400204

Google Scholar

[37] Zong, X., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): pp.4403-4412.

DOI: 10.1016/s0032-3861(02)00275-6

Google Scholar

[38] Liu, Y., et al., Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 2008. 57(4): pp.632-636.

DOI: 10.1002/pi.2387

Google Scholar

[39] Tan, S., et al., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 2005. 46(16): pp.6128-6134.

DOI: 10.1016/j.polymer.2005.05.068

Google Scholar

[40] Ramakrishna, S., An introduction to electrospinning and nanofibers2005: World Scientific Pub Co Inc.

Google Scholar

[41] Rutledge, G.C., C.B. Mary, and C.L. Pai, Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics, 2011, Massachusetts Institute of Technology.

Google Scholar

[42] Kaur, S., et al., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. Journal of membrane science, (2011).

DOI: 10.1016/j.memsci.2011.12.005

Google Scholar

[43] Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006. 7(10): pp.2796-2805.

DOI: 10.1021/bm060680j

Google Scholar

[44] Eichhorn, S.J. and W.W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the royal society Interface, 2005. 2(4): pp.309-318.

DOI: 10.1098/rsif.2005.0039

Google Scholar