[1]
Gross, R.A. and B. Kalra, Biodegradable polymers for the environment. Science, 2002. 297(5582): pp.803-807.
DOI: 10.1126/science.297.5582.803
Google Scholar
[2]
Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004. 4(9): pp.835-864.
DOI: 10.1002/mabi.200400043
Google Scholar
[3]
Patel, M., et al., Life‐cycle Assessment of Bio‐based Polymers and Natural Fiber Composites. Biopolymers Online, (2003).
Google Scholar
[4]
La Mantia, F. and M. Morreale, Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 2011: p.579–588.
DOI: 10.1016/j.compositesa.2011.01.017
Google Scholar
[5]
Vink, E.T.H., et al., Applications of life cycle assessment to NatureWorks (TM) polylactide (PLA) production. Polymer Degradation and Stability, 2003. 80(3): pp.403-419.
DOI: 10.1016/s0141-3910(02)00372-5
Google Scholar
[6]
Gupta, B., N. Revagade, and J. Hilborn, Poly (lactic acid) fiber: An overview. Progress in polymer science, 2007. 32(4): pp.455-482.
DOI: 10.1016/j.progpolymsci.2007.01.005
Google Scholar
[7]
Schmack, G., et al., Biodegradable fibers of poly (L‐lactide) produced by high‐speed melt spinning and spin drawing. Journal of applied polymer science, 1999. 73(14): pp.2785-2797.
DOI: 10.1002/(sici)1097-4628(19990929)73:14<2785::aid-app1>3.0.co;2-l
Google Scholar
[8]
Cicero, J.A. and J.R. Dorgan, Physical properties and fiber morphology of poly (lactic acid) obtained from continuous two-step melt spinning. Journal of Polymers and the Environment, 2001. 9(1): pp.1-10.
Google Scholar
[9]
Schmack, G., et al., High‐speed melt spinning of various grades of polylactides. Journal of applied polymer science, 2004. 91(2): pp.800-806.
DOI: 10.1002/app.13170
Google Scholar
[10]
Hufenus, R., et al., Biodegradable Bicomponent Fibers from Renewable Sources: Melt‐Spinning of Poly (lactic acid) and Poly [(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)]. Macromolecular Materials and Engineering, 2012: pp.75-84.
DOI: 10.1002/mame.201100063
Google Scholar
[11]
Leenslag, J. and A. Pennings, High-strength poly (l-lactide) fibres by a dry-spinning/hot-drawing process. Polymer, 1987. 28(10): pp.1695-1702.
DOI: 10.1016/0032-3861(87)90012-7
Google Scholar
[12]
Kim, K., et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly (, -lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003. 24(27): pp.4977-4985.
DOI: 10.1016/s0142-9612(03)00407-1
Google Scholar
[13]
Li, D., M.W. Frey, and A.J. Baeumner, Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of membrane science, 2006. 279(1): pp.354-363.
DOI: 10.1016/j.memsci.2005.12.036
Google Scholar
[14]
You, Y., et al., Thermal interfiber bonding of electrospun poly (l-lactic acid) nanofibers. Materials Letters, 2006. 60(11): pp.1331-1333.
DOI: 10.1016/j.matlet.2005.11.022
Google Scholar
[15]
Xu, X., et al., Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006. 42(9): p.2081-(2087).
DOI: 10.1016/j.eurpolymj.2006.03.032
Google Scholar
[16]
Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 1995. 35(2-3): pp.151-160.
DOI: 10.1016/0304-3886(95)00041-8
Google Scholar
[17]
Huang, C., et al., Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006. 17: p.1558.
Google Scholar
[18]
Chen, H.C., C.H. Tsai, and M.C. Yang, Mechanical properties and biocompatibility of electrospun polylactide/poly (vinylidene fluoride) mats. Journal of Polymer Research, 2011. 18(3): pp.319-327.
DOI: 10.1007/s10965-010-9421-5
Google Scholar
[19]
Ma, M., et al., Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 2005. 38(23): pp.9742-9748.
DOI: 10.1021/ma0511189
Google Scholar
[20]
Ma, M., Nanostructured electrospun fibers: from superhydrophobicity to block copolymer self-assembly. Thesis, Massachusetts Institute of Technology, (2008).
Google Scholar
[21]
El-Bourawi, M., et al., A framework for better understanding membrane distillation separation process. Journal of membrane science, 2006. 285(1): pp.4-29.
DOI: 10.1016/j.memsci.2006.08.002
Google Scholar
[22]
Khayet, M., Membranes and theoretical modeling of membrane distillation: A review. Advances in colloid and interface science, 2011. 164(1): pp.56-88.
DOI: 10.1016/j.cis.2010.09.005
Google Scholar
[23]
Yang, F., et al., Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004. 25(10): p.1891-(1900).
DOI: 10.1016/j.biomaterials.2003.08.062
Google Scholar
[24]
Li, W.J., et al., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005. 26(6): pp.599-609.
DOI: 10.1016/j.biomaterials.2004.03.005
Google Scholar
[25]
Xie, J., et al., Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS nano, 2010: pp.5027-5036.
DOI: 10.1021/nn101554u
Google Scholar
[26]
Greiner, A., Medicinal Applications for Electrospun Nanofibers. Tissue Engineering, 2012. 9: p.1.
Google Scholar
[27]
Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004. 25(13): pp.2595-2602.
DOI: 10.1016/j.biomaterials.2003.09.043
Google Scholar
[28]
Ran, X., et al., Thermal and mechanical properties of blends of polylactide and poly (ethylene glycol‐co‐propylene glycol): Influence of annealing. Journal of applied polymer science, 2010. 116(4): p.2050-(2057).
DOI: 10.1002/app.31701
Google Scholar
[29]
Ramdhanie, L.I., et al., Thermal and mechanical characterization of electrospun blends of poly (lactic acid) and poly (glycolic acid). Polymer journal, 2006. 38(11): pp.1137-1145.
DOI: 10.1295/polymj.pj2006062
Google Scholar
[30]
Tan, E.P.S. and C. Lim, Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology, 2006. 17: p.2649.
DOI: 10.1088/0957-4484/17/10/034
Google Scholar
[31]
Cho, A.R., et al., Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. Journal of applied polymer science, 2011. 120(2): pp.752-758.
DOI: 10.1002/app.33262
Google Scholar
[32]
Kaur, S., et al., Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination, 2011. 279(1–3): pp.201-209.
DOI: 10.1016/j.desal.2011.06.009
Google Scholar
[33]
Lalia, B.S., et al., Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of membrane science, in press, 2012(0).
DOI: 10.1016/j.memsci.2012.10.061
Google Scholar
[34]
Li, L., R. Hashaikeh, and H.A. Arafat, Development of eco-efficient micro-porous membranes via the electrospinning and annealing of poly (lactic acid). Journal of membrane science, 2013. 436: pp.57-67.
DOI: 10.1016/j.memsci.2013.02.037
Google Scholar
[35]
Jena, A. and K. Gupta, Characterization of pore structure of filtration media. Fluid/Particle Separation Journal, 2002. 14(3): pp.227-241.
Google Scholar
[36]
Jena, A. and K. Gupta, Pore volume of nanofiber nonwovens. Int. Nonwovens J, 2005. 14(2): pp.25-30.
DOI: 10.1177/1558925005os-1400204
Google Scholar
[37]
Zong, X., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): pp.4403-4412.
DOI: 10.1016/s0032-3861(02)00275-6
Google Scholar
[38]
Liu, Y., et al., Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 2008. 57(4): pp.632-636.
DOI: 10.1002/pi.2387
Google Scholar
[39]
Tan, S., et al., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 2005. 46(16): pp.6128-6134.
DOI: 10.1016/j.polymer.2005.05.068
Google Scholar
[40]
Ramakrishna, S., An introduction to electrospinning and nanofibers2005: World Scientific Pub Co Inc.
Google Scholar
[41]
Rutledge, G.C., C.B. Mary, and C.L. Pai, Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics, 2011, Massachusetts Institute of Technology.
Google Scholar
[42]
Kaur, S., et al., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. Journal of membrane science, (2011).
DOI: 10.1016/j.memsci.2011.12.005
Google Scholar
[43]
Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006. 7(10): pp.2796-2805.
DOI: 10.1021/bm060680j
Google Scholar
[44]
Eichhorn, S.J. and W.W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the royal society Interface, 2005. 2(4): pp.309-318.
DOI: 10.1098/rsif.2005.0039
Google Scholar