[1]
Frank Robert Altobelli, An Innovative Technology in Concrete Construction, (1989).
Google Scholar
[2]
K. H. Khayat and Z. Guizani, Use of Viscosity-Modifying Admixture to Enhance Stability of Fluid Concrete, ACI Materials Journal, Vol. 94, No. 4, 1997, pp.332-341.
DOI: 10.14359/317
Google Scholar
[3]
Zhu W., Bartos P.J. M, Permeation properties of self-compacting concrete,. Cement and Concrete Research, Vol. 33, 2003, pp.921-926.
DOI: 10.1016/s0008-8846(02)01090-6
Google Scholar
[4]
Okamura H., Ouchi M., Self-Compacting concrete, Journal of Advanced Concrete Technology, Vol: 1(1), 2003, pp.5-15.
Google Scholar
[5]
Okamura H., Ouchi M., Applications of self-compacting concrete in Japan, The 3rd International Rilem Symposium on Self-Compacting Concrete. Wallevik OH, Nielson I, editors RILEM Publications A.R.L., Bagneux, France, 2003, pp.3-5.
DOI: 10.1002/bate.199804500
Google Scholar
[6]
EFNARC, Specifications and Guidelines for Self-Compacting Concrete, (www. efnarc. org), 2002, pp.1-32.
Google Scholar
[7]
Krieg W, Self-Compacting Concrete: Definition, Development and Applications, A technical Paper Presented in the Meeting of ACI, Saudi Arabia Chapter, Eastern Province, October, (2003).
Google Scholar
[8]
Mohd Syahrul Hisyam Mohd Sani, Fadhluhartini bt Muftah, Zulkifli Muda, The Properties of Special Concrete Using Washed Bottom Ash (WBA) as Partial Sand Replacement, International Journal of Sustainable Construction Engineering & Technology Vol. 1, No 2, December (2010).
DOI: 10.37934/araset.29.2.236250
Google Scholar
[9]
U. A. Abdulhameed and S.B. Khairul (2012), Properties of concrete using Tanjung Bin Power Plant coal bottom ash and fly ash, International Journal of Sustainable Construction Engineering and Technology, Vol. 3(2): 56-69, (2010).
Google Scholar
[10]
Muhardi, Marto, A., Kassim, K. A., Makhtar, A. M., Lee F. W. and Yap S. L. Engineering Characteristics of Tanjung Bin Coal Ash, Electronic Journal of Geotechnical Engineering, Vol. 15: 1117-1129.
Google Scholar
[11]
Mehta PK, Concrete structure: properties and materials, NJ, USA: Prentice-Hall, (1986).
Google Scholar
[12]
A. M. Neville, Properties of Concrete, Fourth Edition, Longman Group Limited, P. 757- 758, (1995).
Google Scholar
[13]
Naik T.R., Kumar R., Ramme B.W., Fethullah Canpolat, Development of high-strength, economical self-consolidating concrete, Construction and Building Materials 30 (2012) 463–469.
DOI: 10.1016/j.conbuildmat.2011.12.025
Google Scholar
[14]
Yahia A., Tanimura M., Shimabukuro A., Shimoyama Y., Effect of rheological parameter on self-compactability of concrete containing various mineral admixtures, RILEM international symposium on self-compacting concrete, Stockholm, Sweden, September; 1999, p.523.
DOI: 10.1007/bf02484169
Google Scholar
[15]
Prajapati Krishnapal, Chandak Rajeev and Dubey Sanjay Kumar, Development and Properties of Self Compacting Concrete Mixed with Fly Ash, Research Journal of Engineering Sciences Vol. 1(3), 11-14, Sept. (2012).
Google Scholar
[16]
Naik T.R., Kumar R., Use of limestone quarry and other by-products for developing economical self-compacting concrete, Report CBU 2003-15, UWM center for by- production utilization, University of Wisconsin –Milwaukee, USA, April (2003).
Google Scholar
[17]
Naik T.R., Ramme B.W., High –strength of concrete containing large quantities of fly ash, ACI Mater J, 86 (2), 1989, 111 - 6.
DOI: 10.14359/2246
Google Scholar
[18]
N. Bouzoubaa and M. Lachemi, Self Compacting Concrete Incorporating High- Volumes of Class F Fly Ash: Preliminary Results, Cement and Concrete Research, Vol. 31, No. 3, March 2001, pp.413-420.
DOI: 10.1016/s0008-8846(00)00504-4
Google Scholar
[19]
Siddique R., "Utilization of coal combustion by-products in Sustainable Construction materials, resources, conservation and recycling, Vol. 54, Issue 12, 2010, pp.1060-1066.
DOI: 10.1016/j.resconrec.2010.06.011
Google Scholar
[20]
Siddique R., Paratibha Aggarwal, Yogesh Aggarwal, Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash, Construction and Building Materials 29 (2012) 73–81.
DOI: 10.1016/j.conbuildmat.2011.10.035
Google Scholar
[21]
Kurama H. and Kaya M., Usage of Coal Combustion bottom ash in concrete mixture, Construction and Building Materials, Vol. 22, 2008, p.1922-(1928).
DOI: 10.1016/j.conbuildmat.2007.07.008
Google Scholar
[22]
Bai Y, Darcy F. & Basheer P.A.M. (2005), Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate, Construction and Building Materials 19, 2005, 691–697.
DOI: 10.1016/j.conbuildmat.2005.02.021
Google Scholar
[23]
Kasemchaisiri R. and Tangtermsirikul S., Properties of Self- Compacting Concrete in Corporating Bottom Ash as a Partial Replacement of Fine Aggregate, Science Asia, No 34, 2008, pp.087-095.
Google Scholar
[24]
X. G. Li, Y. Lv, B. G. Ma, Q. B. Chen, X. B. Yin, S. W. Jian., Utilization of municipal solid waste incineration bottom ash in blended cement, Journal of Cleaner Production, Volume 32, September 2012, Pages 96-100.
DOI: 10.1016/j.jclepro.2012.03.038
Google Scholar
[25]
J. Yao, W. B. Li, Q. N. Kong, Y. Y. Wu, R. He, D. S. Shen, Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China, Fuel, Volume 89, Issue 3, March 2010, Pages 616-622.
DOI: 10.1016/j.fuel.2009.06.016
Google Scholar
[26]
Y. Wei, T. Shimaoka, A. Saffarzadeh, F. Takahashi, Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases, Journal of Hazardous Materials, Volume 187, Issues 1–3, 15 March 2011, Pages 534-543.
DOI: 10.1016/j.jhazmat.2011.01.070
Google Scholar