[1]
Whitehurst EA. 1951, Soniscope tests concrete structures. J Am Concr. Inst; 47: 443–4.
Google Scholar
[2]
R. Jones, E.N. Gatfield, Testing concrete by an ultrasonic pulse technique, DSIR Road Research Tech. Paper No. 34 (London, H.M.S.O., 1955).
Google Scholar
[3]
Ramazan Demirbogă, İbrahim Türkmen, Mehmet B. Karakoc, 2004. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research 34: 2329–2336.
DOI: 10.1016/j.cemconres.2004.04.017
Google Scholar
[4]
Khatib, J.M. 2008. Performance of self-compacting concrete containing fly ash. . Construction and Building Materials, 22(9): 1963-(1971).
DOI: 10.1016/j.conbuildmat.2007.07.011
Google Scholar
[5]
Shariq, M, Prasad, J., Masood, A. 2013. Studies in ultrasonic pulse velocity of concrete containing GGBFS, Construction and Building Materials, 40: 944-950.
DOI: 10.1016/j.conbuildmat.2012.11.070
Google Scholar
[6]
Sadeghi Nik, A, Lotfi Omran, O. 2013. Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity, Construction and Building Materials, 44: 654-662.
DOI: 10.1016/j.conbuildmat.2013.03.082
Google Scholar
[7]
K. Tharmaratnam, B.S. Tan, 1990. Attenuation of ultrasonic pulse in cement mortar, Cem. Concr. Res. 20 335– 345.
DOI: 10.1016/0008-8846(90)90022-p
Google Scholar
[8]
ASTM C 150-92. 1992. Standard Specification for Portland Cement. Annual Book of ASTM Standard , Vol. 04. 02. Philadelphia: America society for Testing and Materials.
Google Scholar
[9]
ASTM C618- 03. 2003. Standard specifications for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken (PA): ASTM International.
DOI: 10.1520/c0618-15
Google Scholar
[10]
ASTM C 192/C 192M – 02. 2002. Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken (PA): ASTM International.
Google Scholar
[11]
British Standard Institution European Standard. BS EN 12390-3. Testing hardened concrete. Compressive strength of test specimens. London: BSI; (2002).
Google Scholar
[12]
British Standard Institution. BS 1881-203: 1986. Testing hardened Concrete. Recommendations for Measurement of Velocity of Ultrasonic Pulses in Concrete.
Google Scholar
[13]
Hamid, R., Yusof, K.M., Zain and M.F.M. 2010. A combined ultrasound method applied to high performance concrete with silica fume, Construction and Building Materials, 24(1): 94–98.
DOI: 10.1016/j.conbuildmat.2009.08.012
Google Scholar
[14]
Mucteba Uysal, Mansur Sumer, 2011. Performance of self-compacting concrete containing different mineral admixtures. Construction and Building Materials, 25: 4112–4120.
DOI: 10.1016/j.conbuildmat.2011.04.032
Google Scholar
[15]
Rahmat Madandoust, S. Yasin Mousavi. 2012. Fresh and hardened properties of self-compacting concrete containing metakaolin. Construction and Building Materials 35: 752–760.
DOI: 10.1016/j.conbuildmat.2012.04.109
Google Scholar
[16]
Türkmen, I., Öz, A. and Aydin, A. C. 2010. Characteristics of workability, strength, and ultrasonic pulse velocity of SCC containing zeolite and slag. Scientific Research and Essays, 5(15): 2055-(2064).
Google Scholar
[17]
Bogas, J.A., Gomes, M.G., Gomes, A. 2013. A Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method, Ultrasonics, 53(5): 962-972.
DOI: 10.1016/j.ultras.2012.12.012
Google Scholar