[1]
Geopolymer institute, http: /www. geopolymer. org/applications/global-warming. Retrieved on 19 October (2011).
Google Scholar
[2]
Geopolymer institute, http: /www. geopolymer. org/applications/geopolymer-cement. Retrieved on 21 October (2011).
Google Scholar
[3]
Z. Jing, N. Matsuoka, F. Jin, N. Yamasaki, K. Suzuki and T. Hashida, Solidification of coal fly ash using hydrothermal processing method. J. Mater. Sci., 41 (2006), p.1579–1584.
DOI: 10.1007/s10853-006-4648-6
Google Scholar
[4]
Duxson P, Lukey GL, Van Deventer JSJ. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci 2007; 42: 3044–54.
DOI: 10.1007/s10853-006-0535-4
Google Scholar
[5]
Davidovits J, Davidovics M. Geopolymer: ultra-high temperature tooling material for the manufacture of advanced composites. SAMPE 1991; 36: 1039–49.
Google Scholar
[6]
P Rahier H, Simons W, Van Mele B. Low-temperature synthesized aluminosilicate glasses. J Mater Sci 1997; 32: 2237–47.
Google Scholar
[7]
Chen TNW, van Riessen LV, Southam DC. Determining the reactivity of a fly ash for production of geopolymer. J Am Ceram Soc 2009; 92(4): 881–7.
Google Scholar
[8]
Lee WKW, Van Deventer JSJ. Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloid Surface A 2002; 211: 49–66.
DOI: 10.1016/s0927-7757(02)00237-6
Google Scholar
[9]
Brew DRM, MacKenzie KJD. Geopolymer synthesis using silica fume and sodium aluminate. J Mater Sci 2007; 42(11): 3990–3.
DOI: 10.1007/s10853-006-0376-1
Google Scholar
[10]
Gordon M, Bell J, Kriven WM. Comparison of naturally and synthetically-derived, potassium based geopolymers. Ceram Trans 2005; 165: 96–105.
Google Scholar
[11]
Shi C, Krivenko PV, Roy D. Alkali-activated cements and concretes. London and New York: Taylor and Francis; 2006. ISBN 10: 0-415-70004-3.
DOI: 10.4324/9780203390672
Google Scholar
[12]
Barbosa VFF, MacKenzie KJD. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater Lett 2003; 75(203): 1477–82.
DOI: 10.1016/s0167-577x(02)01009-1
Google Scholar
[13]
Mackenzie KJD. What are these things called geopolymers. A physicochemical perspective. Ceram Trans: Am Ceram Soc 2003; 153: 175–86.
Google Scholar
[14]
Barbosa VFF, MacKenzie KJD. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 2003; 38: 319–31.
DOI: 10.1016/s0025-5408(02)01022-x
Google Scholar
[15]
Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Analysis 1991; 37: 1633–56.
Google Scholar
[16]
Rowles M, O'Connor B. Chemical optimization of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite. J Mater Chem 2003; 13: 1161–5.
DOI: 10.1039/b212629j
Google Scholar
[17]
Van Jaarsveld JGS, van Deventer JSJ, Lukey GC. The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers. J Chem Eng 2002; 89: 63–73.
DOI: 10.1016/s1385-8947(02)00025-6
Google Scholar
[18]
De Vargas Alexandre S, Dal Molin Denise CC, Antonio CF, da Silva Felipe Jose, Pavao Bruno, Veit Hugo. The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Comp 2011(33): 635–60.
DOI: 10.1016/j.cemconcomp.2011.03.006
Google Scholar
[19]
Ching, Francis D.K. (1995). A Visual Dictionary of Architecture. New York: John Wiley and Sons. p.32. ISBN 0-471-82451-3.
Google Scholar
[20]
M. T. Muhammad Faheem, A. M. Mustafa Al Bakri, H. Kamarudin, C. M. Ruzaidi, M. Binhussain, and A. M. Izzat in: The Relationship of Na2SiO3/NaOH Ratio, Kaolin/Alkaline Activator Ratio and Sand/Kaolin Ratio to the Strength of Kaolin - Based Geopolymer Brick. Int. Review of Mech. Eng; Vol. 7, N1. ISSN 1970-8734 (2013).
DOI: 10.4028/www.scientific.net/kem.594-595.406
Google Scholar
[21]
Khalil, M.Y. and Merz, E., (1994), Immobilization of intermediate-level wastes in geopolymers, Journal of Nuclear Materials, 211, 141-148.
DOI: 10.1016/0022-3115(94)90364-6
Google Scholar
[22]
Zosin, A.P., Priimak, T.I. and Avsaragov, K.B., (1998), Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes, Atomic Energy, 85, 510-514.
DOI: 10.1007/bf02358790
Google Scholar
[23]
Heah CY et al. Study on solids-to-liquid and alkaline activator ratios on kaolin based geopolymers. Constr Build Mater; 35: 912–92. (2012).
DOI: 10.1016/j.conbuildmat.2012.04.102
Google Scholar
[24]
Scientific. Net, http: /www. scientific. net/KEM. 509. 33, Retrieved 16 May (2012).
Google Scholar
[25]
Pohl, Walter L. (2011).
Google Scholar
[26]
Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW(1999) Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research 29: 997–1004.
DOI: 10.1016/s0008-8846(99)00074-5
Google Scholar