Effect on Strength and Hardness of Clay Ceramic Substrate after Treatment Using Koalin Based Geopolymer Glaze

Article Preview

Abstract:

Geopolymerization is an alternative for ceramic industry by using clay based material such as kaolin or calcined kaolin geopolymer. Geopolymer paste is initially produced by alkaline activation of calcined kaolin with NaOH and Na2SiO3 solution), dried at 80oC for 4 hours, pulverized and sieved to fixed particle size powder. The parameters involved in this processing route (alkali concentration, kaolin or calcined kaolin to activator ratio, alkali activator ratio and heating conditions) are investigated. Geopolymeric powder is added with water to produce slurry to be coated on the surface of clay ceramic. It undergoes heat treatment at high temperature to produce glaze on the surface. Flexural strength and hardness analysis are studied. Result evidences the processing show of incresing strength value between 8-10% after treatment with geopolymer glaze and also the Vickers hardness values of geopolymers improved.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

575-580

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Geopolymer institute, http: /www. geopolymer. org/applications/global-warming. Retrieved on 19 October (2011).

Google Scholar

[2] Geopolymer institute, http: /www. geopolymer. org/applications/geopolymer-cement. Retrieved on 21 October (2011).

Google Scholar

[3] Z. Jing, N. Matsuoka, F. Jin, N. Yamasaki, K. Suzuki and T. Hashida, Solidification of coal fly ash using hydrothermal processing method. J. Mater. Sci., 41 (2006), p.1579–1584.

DOI: 10.1007/s10853-006-4648-6

Google Scholar

[4] Duxson P, Lukey GL, Van Deventer JSJ. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci 2007; 42: 3044–54.

DOI: 10.1007/s10853-006-0535-4

Google Scholar

[5] Davidovits J, Davidovics M. Geopolymer: ultra-high temperature tooling material for the manufacture of advanced composites. SAMPE 1991; 36: 1039–49.

Google Scholar

[6] P Rahier H, Simons W, Van Mele B. Low-temperature synthesized aluminosilicate glasses. J Mater Sci 1997; 32: 2237–47.

Google Scholar

[7] Chen TNW, van Riessen LV, Southam DC. Determining the reactivity of a fly ash for production of geopolymer. J Am Ceram Soc 2009; 92(4): 881–7.

Google Scholar

[8] Lee WKW, Van Deventer JSJ. Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloid Surface A 2002; 211: 49–66.

DOI: 10.1016/s0927-7757(02)00237-6

Google Scholar

[9] Brew DRM, MacKenzie KJD. Geopolymer synthesis using silica fume and sodium aluminate. J Mater Sci 2007; 42(11): 3990–3.

DOI: 10.1007/s10853-006-0376-1

Google Scholar

[10] Gordon M, Bell J, Kriven WM. Comparison of naturally and synthetically-derived, potassium based geopolymers. Ceram Trans 2005; 165: 96–105.

Google Scholar

[11] Shi C, Krivenko PV, Roy D. Alkali-activated cements and concretes. London and New York: Taylor and Francis; 2006. ISBN 10: 0-415-70004-3.

DOI: 10.4324/9780203390672

Google Scholar

[12] Barbosa VFF, MacKenzie KJD. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater Lett 2003; 75(203): 1477–82.

DOI: 10.1016/s0167-577x(02)01009-1

Google Scholar

[13] Mackenzie KJD. What are these things called geopolymers. A physicochemical perspective. Ceram Trans: Am Ceram Soc 2003; 153: 175–86.

Google Scholar

[14] Barbosa VFF, MacKenzie KJD. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 2003; 38: 319–31.

DOI: 10.1016/s0025-5408(02)01022-x

Google Scholar

[15] Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Analysis 1991; 37: 1633–56.

Google Scholar

[16] Rowles M, O'Connor B. Chemical optimization of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite. J Mater Chem 2003; 13: 1161–5.

DOI: 10.1039/b212629j

Google Scholar

[17] Van Jaarsveld JGS, van Deventer JSJ, Lukey GC. The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers. J Chem Eng 2002; 89: 63–73.

DOI: 10.1016/s1385-8947(02)00025-6

Google Scholar

[18] De Vargas Alexandre S, Dal Molin Denise CC, Antonio CF, da Silva Felipe Jose, Pavao Bruno, Veit Hugo. The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem Concr Comp 2011(33): 635–60.

DOI: 10.1016/j.cemconcomp.2011.03.006

Google Scholar

[19] Ching, Francis D.K. (1995). A Visual Dictionary of Architecture. New York: John Wiley and Sons. p.32. ISBN 0-471-82451-3.

Google Scholar

[20] M. T. Muhammad Faheem, A. M. Mustafa Al Bakri, H. Kamarudin, C. M. Ruzaidi, M. Binhussain, and A. M. Izzat in: The Relationship of Na2SiO3/NaOH Ratio, Kaolin/Alkaline Activator Ratio and Sand/Kaolin Ratio to the Strength of Kaolin - Based Geopolymer Brick. Int. Review of Mech. Eng; Vol. 7, N1. ISSN 1970-8734 (2013).

DOI: 10.4028/www.scientific.net/kem.594-595.406

Google Scholar

[21] Khalil, M.Y. and Merz, E., (1994), Immobilization of intermediate-level wastes in geopolymers, Journal of Nuclear Materials, 211, 141-148.

DOI: 10.1016/0022-3115(94)90364-6

Google Scholar

[22] Zosin, A.P., Priimak, T.I. and Avsaragov, K.B., (1998), Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes, Atomic Energy, 85, 510-514.

DOI: 10.1007/bf02358790

Google Scholar

[23] Heah CY et al. Study on solids-to-liquid and alkaline activator ratios on kaolin based geopolymers. Constr Build Mater; 35: 912–92. (2012).

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[24] Scientific. Net, http: /www. scientific. net/KEM. 509. 33, Retrieved 16 May (2012).

Google Scholar

[25] Pohl, Walter L. (2011).

Google Scholar

[26] Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW(1999) Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research 29: 997–1004.

DOI: 10.1016/s0008-8846(99)00074-5

Google Scholar