Effect of Empty Fruit Bunch (EFB) Fiber on Mechanical Properties of HDPE/EVA/MMT/EFB Nanohybrid Biocomposite

Article Preview

Abstract:

This work study the effect of empty fruit bunch (EFB) fiber on mechanical properties (tensile, flexural and impact) of different formulation of HDPE/EVA/MMT/EFB nanohybrid biocomposite with present of 1.5 phr compatibilizer. The ratio of HDPE and EVA are fixed at 80 wt% and 20 wt% respectively. However, the nanoclay montmorillonite (MMT) was varied from 0, 0.5, 1.0 and 1.5 phr. Meanwhile EFB fiber was varied from 0, 10, 20, 30, 40 and 50 wt%. The HDPE/EVA/MMT/EFB blends were prepared by melt extrusion blending technique using a single screw extruder. Generally, the result found that by increasing of EFB fiber content, the tensile strength of HDPE/EVA/MMT/EFB nanohybrid biocomposite was declined. The highest tensile strength was given by formulation of HDPE/EVA/1 phr MMT without EFB fiber loading which is 29.064 MPa. Meanwhile the lowest tensile strength is given by formulation of HDPE/EVA/0.5 phr MMT with 50 wt% of EFB fiber which is 9.673 MPa. Similar trend also showed by the result of flexural strength obtained. In contrast, the value of tensile modulus is progressively increased with further increasing of EFB fiber content. The highest tensile modulus given by formulation of HDPE/EVA/1 phr MMT with reinforced of 50 wt% EFB fiber loading (694.53 MPa) whereas the lowest is given by HDPE/EVA/0.5 phr MMT with 10 wt% EFB fiber loading (290.76 MPa). Similar trend for the flexural modulus where further increasing of EFB fiber content, the flexural modulus is directly increasing. Unfortunately, for impact properties, reinforced of EFB fiber give resulted on the reduction of impact strength.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

618-623

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Spitalskya, D. Tasisb, K. Papagelisb and C. Galiotis. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress In Polymer Science, 35(3): 357-401. (2010).

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[2] J. Pascual, E. Fages, O. Fenollar, D. Garcia, R. Balart. Influence of the Compatibilizer/ Nanoclay Ratio on Final Properties of Polypropylene Matrix Modified with Montmorillonite-Based Organoclay. Journal of Polymer Bull, 62: 367-380. (2008).

DOI: 10.1007/s00289-008-0018-7

Google Scholar

[3] M. Vikas. Polymer Layered Silicate Nanocomposites: A Review. Journal of Materials, 2(3): 992-1057 (2009).

Google Scholar

[4] Y. Wang, H. Shen, LI Gu, M. Kancheng. Crystallization and melting behavior of PP/nano CaCO3 composites with different interfacial interaction. Journal of Thermal Analysis and Calorimetry, 99(2) : 399-407. (2010).

DOI: 10.1007/s10973-009-0130-4

Google Scholar

[5] G.M. Chuan and L.M. Yu. Phase sturucture and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composite. Composite Sciences Technology , 67(14): 2997-3005(2007).

DOI: 10.1016/j.compscitech.2007.05.022

Google Scholar

[6] M. Alexander and P. Dubois. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science Engineering: R: Reports, 28 (1-2) (2000) 1–63. (2000).

DOI: 10.1016/s0927-796x(00)00012-7

Google Scholar

[7] Ali, Ilias and Al-Zahrani. Mechanical and Morphological Analysis of HDPE/ EVA/ CaCO3 Ternary blends. University of King Saud. (2011).

DOI: 10.1007/s00289-011-0608-7

Google Scholar

[8] N. Bing, Z. Qin, W. Yong, D. Rongni and F. Qiang. Three-dimensional phase morphologies in HDPE/EVA blends obtained via dynamic injection packing molding. Journal of Polymer, 44(19): 5737-5747. (2003).

DOI: 10.1016/s0032-3861(03)00524-x

Google Scholar

[9] D.R. Mulinari, Herman, J.C. Voorwald, O. Maria and H. Cioffi. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology, 69(2): 214–219. (2009).

DOI: 10.1016/j.compscitech.2008.10.006

Google Scholar

[10] P. Ganguly and W.J. Poole. Characterization of reinforcement distribution inhomogeneity in metal matrix composites. Material Science Engineering A, 332(1-2): 301–310. (2002).

DOI: 10.1016/s0921-5093(01)01757-9

Google Scholar

[11] F. Omar, K.B. Andrzej, F. Hans-Peter and S. Mohini. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11): 1552-1596. (2012).

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[12] J.R. Araujo, B. Mano, G.M. Teixeira, M.A.S. Spinace and Marco-A. De Paoli. Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, Interfacial and Morphological properties. Composites Science and Technology, 70: 1637–1644. (2010).

DOI: 10.1016/j.compscitech.2010.06.006

Google Scholar

[13] H.S. Yang , H.J. Kim, J. Son , H.J. Park, B.J. Lee and T.S. Hwang. Rice-husk flour filled polypropylene composites: mechanical and morphological study. Composite Structures, 63(3-4): 305–312. (2004).

DOI: 10.1016/s0263-8223(03)00179-x

Google Scholar

[14] H. Ku, H. Wang, N. Pattarachaiyakoop and M. Trada. A review on the tensile properties of natural fiber reinforced polymer composites. Composites: Part B 42: 856-873. (2011).

DOI: 10.1016/j.compositesb.2011.01.010

Google Scholar

[15] P. Herrera-Franco, A. Valadez Gonzalez and M. Cervantes. Development and characterization of HDPE/Sand/Natural fiber composite. Composite Part B 28B: 331-343. (1996).

DOI: 10.1016/s1359-8368(96)00024-8

Google Scholar

[16] N.A. Ibrahim, S.N.A. Ahmad, W.M.Z.W. Yunus and K.Z. Dahlan. Effect of electron beam irradiation and poly(vinyl pyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite. eXPRESS Polymer Letters. 3(4): 226–234. (2009).

DOI: 10.3144/expresspolymlett.2009.29

Google Scholar

[17] A.K. Mohanty, A. Wibowo, M. Misra and L.T. Drzal. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing. 35(3): 363-370. (2004).

DOI: 10.1016/j.compositesa.2003.09.015

Google Scholar

[18] B. Mano, J.R. Araújo, M.A.S. Spinacé and M.A. De Paoli. Polyolefin composites with curaua fibres: Effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Composites Science and Technology. 70(1): 29–35. (2010).

DOI: 10.1016/j.compscitech.2009.09.002

Google Scholar

[19] B. Abu, Aznizam and A. Hassan. Impact properties of oil palm empty fruit bunch filled impact modified unplasticised poly (vinyl chloride) composites. Journal Technology, 39A: 73–82. (2003).

DOI: 10.11113/jt.v39.443

Google Scholar