Estimation of Thermal Stress Intensity Factor in a Strip with Various Property Gradations Subjected to Thermal Shock

Article Preview

Abstract:

A numerical procedure of assessment of Thermal Stress Intensity Factors (TSIFs) of an edge crack in a strip made of Functionally Graded Material (FGM) subjected to thermal cooling process was elaborated. In order to perform it own subroutines in ABAQUS code were created. The analyzed ZrO2+Ti6AlV material in the form of the FGM is applied as cylinder liners (Thermal Barrier Coatings TBC) of aircrafts engines and is subjected to extremely quick temperature changes during the engine work. Therefore estimation of the TSIF to determine fracture process in the ZrO2+Ti6AlV material is important for designing of the structural element thermal protection and further safety of aircrafts passengers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-75

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[2] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[3] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[4] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.

DOI: 10.1016/j.commatsci.2007.07.030

Google Scholar

[5] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[6] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[7] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions. Comput. Mat. Sci. 64 (2012), 285-288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[8] L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.

DOI: 10.1016/j.commatsci.2008.07.005

Google Scholar

[9] L. Marsavina, T. Sadowski: Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comput. Mat. Sci. 45 (2009) 693-697.

DOI: 10.1016/j.commatsci.2008.06.005

Google Scholar

[10] L. Marsavina, T. Sadowski, Effect of biaxiall load on crack deflection/penetration at bi-material ceramic interface. Int. J. Frac. 148 (2007) 79-84.

DOI: 10.1007/s10704-008-9181-y

Google Scholar

[11] L. Marsavina, T. Sadowski, Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface, Int. J. Frac. 145 (2007) 237-243.

DOI: 10.1007/s10704-007-9124-z

Google Scholar

[12] P. Gu, M. Dao, R.J. Asaro, A simplified method For calculating the crack tip field of functionally graded materials using the domain integral. Journal of Applied Mechanics 66, (1999). 101–108.

DOI: 10.1115/1.2789135

Google Scholar

[13] G. Anlas, M.H. Santare, J. Lambros Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Frac. 104 (2000) 131–143.

Google Scholar

[14] Z-H. Jin and G.H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, Int. J. Frac. 107 (2001) 73-98.

Google Scholar

[15] D. Boussaa, Optimization of temperature-dependent functionally graded material bodies. Comp. Meth. Appl. Mech. Eng. 198 (2009) 2827-2838.

DOI: 10.1016/j.cma.2009.02.013

Google Scholar