[1]
T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.
DOI: 10.1016/j.commatsci.2007.07.041
Google Scholar
[2]
T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.
DOI: 10.1016/j.commatsci.2010.04.011
Google Scholar
[3]
E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.
DOI: 10.1163/092764410x554049
Google Scholar
[4]
T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.
DOI: 10.1016/j.commatsci.2007.07.030
Google Scholar
[5]
T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.
DOI: 10.1023/b:frac.0000035087.34082.88
Google Scholar
[6]
T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.
DOI: 10.1016/j.commatsci.2010.05.032
Google Scholar
[7]
T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions. Comput. Mat. Sci. 64 (2012), 285-288.
DOI: 10.1016/j.commatsci.2012.02.048
Google Scholar
[8]
L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.
DOI: 10.1016/j.commatsci.2008.07.005
Google Scholar
[9]
L. Marsavina, T. Sadowski: Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comput. Mat. Sci. 45 (2009) 693-697.
DOI: 10.1016/j.commatsci.2008.06.005
Google Scholar
[10]
L. Marsavina, T. Sadowski, Effect of biaxiall load on crack deflection/penetration at bi-material ceramic interface. Int. J. Frac. 148 (2007) 79-84.
DOI: 10.1007/s10704-008-9181-y
Google Scholar
[11]
L. Marsavina, T. Sadowski, Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface, Int. J. Frac. 145 (2007) 237-243.
DOI: 10.1007/s10704-007-9124-z
Google Scholar
[12]
P. Gu, M. Dao, R.J. Asaro, A simplified method For calculating the crack tip field of functionally graded materials using the domain integral. Journal of Applied Mechanics 66, (1999). 101–108.
DOI: 10.1115/1.2789135
Google Scholar
[13]
G. Anlas, M.H. Santare, J. Lambros Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Frac. 104 (2000) 131–143.
Google Scholar
[14]
Z-H. Jin and G.H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, Int. J. Frac. 107 (2001) 73-98.
Google Scholar
[15]
D. Boussaa, Optimization of temperature-dependent functionally graded material bodies. Comp. Meth. Appl. Mech. Eng. 198 (2009) 2827-2838.
DOI: 10.1016/j.cma.2009.02.013
Google Scholar