[1]
T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.
DOI: 10.1016/j.commatsci.2007.07.041
Google Scholar
[2]
T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.
DOI: 10.1016/j.commatsci.2010.04.011
Google Scholar
[3]
T. Sadowski, G. Golewski, Effect of aggregate kind and graining on modelling of plain concrete under compression, Comput. Mat. Sci. 43 (2008) 119-126.
DOI: 10.1016/j.commatsci.2007.07.037
Google Scholar
[4]
T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.
DOI: 10.1016/j.commatsci.2004.10.005
Google Scholar
[5]
T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.
DOI: 10.1016/j.msea.2006.03.004
Google Scholar
[6]
T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.
DOI: 10.1016/j.commatsci.2006.03.022
Google Scholar
[7]
E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.
DOI: 10.1163/092764410x554049
Google Scholar
[8]
T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.
DOI: 10.1016/j.commatsci.2007.07.030
Google Scholar
[9]
T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.
DOI: 10.1023/b:frac.0000035087.34082.88
Google Scholar
[10]
T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.
DOI: 10.1016/j.commatsci.2007.07.051
Google Scholar
[11]
K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.
DOI: 10.1016/j.commatsci.2008.08.019
Google Scholar
[12]
T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci, 45 (2009) 624-632.
DOI: 10.1016/j.commatsci.2008.07.011
Google Scholar
[13]
T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.
DOI: 10.1016/j.commatsci.2010.05.032
Google Scholar
[14]
T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions. Comput. Mat. Sci. 64 (2012), 285-288.
DOI: 10.1016/j.commatsci.2012.02.048
Google Scholar
[15]
L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.
DOI: 10.1016/j.commatsci.2008.07.005
Google Scholar
[16]
L. Marsavina, T. Sadowski: Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comput. Mat. Sci. 45 (2009) 693-697.
DOI: 10.1016/j.commatsci.2008.06.005
Google Scholar
[17]
Marsavina, L. and Sadowski, T. (2007): Effect of biaxiall load on crack deflection/penetration at bi-material ceramic interface. Int. J. Frac. 148, 79-84.
DOI: 10.1007/s10704-008-9181-y
Google Scholar
[18]
Marsavina, L. and Sadowski, T. (2007): Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int. J. Frac. 145, 237-243.
DOI: 10.1007/s10704-007-9124-z
Google Scholar