Theoretical Meso-Model of Al2O3/ZrO2 Ceramic Response under Compression

Article Preview

Abstract:

This paper presents theoretical modeling of two-phase ceramic composites subjected to compression. The meso-mechanical model allows for inclusion of all microdefects in the polycrystalline structure that exists at the grain boundary interfaces and inside the grains. The constitutive relations for the Al2O3/ZrO2 composite with the gradual degradation of the material properties due to different defects development were formulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-95

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[2] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[3] T. Sadowski, G. Golewski, Effect of aggregate kind and graining on modelling of plain concrete under compression, Comput. Mat. Sci. 43 (2008) 119-126.

DOI: 10.1016/j.commatsci.2007.07.037

Google Scholar

[4] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.

DOI: 10.1016/j.commatsci.2004.10.005

Google Scholar

[5] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.

DOI: 10.1016/j.msea.2006.03.004

Google Scholar

[6] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.

DOI: 10.1016/j.commatsci.2006.03.022

Google Scholar

[7] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[8] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.

DOI: 10.1016/j.commatsci.2007.07.030

Google Scholar

[9] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[10] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.

DOI: 10.1016/j.commatsci.2007.07.051

Google Scholar

[11] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.

DOI: 10.1016/j.commatsci.2008.08.019

Google Scholar

[12] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci, 45 (2009) 624-632.

DOI: 10.1016/j.commatsci.2008.07.011

Google Scholar

[13] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[14] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions. Comput. Mat. Sci. 64 (2012), 285-288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[15] L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.

DOI: 10.1016/j.commatsci.2008.07.005

Google Scholar

[16] L. Marsavina, T. Sadowski: Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comput. Mat. Sci. 45 (2009) 693-697.

DOI: 10.1016/j.commatsci.2008.06.005

Google Scholar

[17] Marsavina, L. and Sadowski, T. (2007): Effect of biaxiall load on crack deflection/penetration at bi-material ceramic interface. Int. J. Frac. 148, 79-84.

DOI: 10.1007/s10704-008-9181-y

Google Scholar

[18] Marsavina, L. and Sadowski, T. (2007): Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int. J. Frac. 145, 237-243.

DOI: 10.1007/s10704-007-9124-z

Google Scholar