Studies on the Pyrolysis Kinetic Behaviours of Polycarbosilan

Article Preview

Abstract:

The pyrolysis kinetic behaviors and reaction mechanism of polycarbosilane (PCS) were characterized by means of XRD, SEM and on-line TG-DSC-FTIR-MS coupling technique, which showed that the pyrolysis process accorded with the F2 integral model (300-600°C), and the values of apparent activation energy (Ea) and pre-exponential factor (A) were 56.10KJ/mol and 10.84, respectively. During the pyrolysis process, PCS was converted into amorphous inorganic solid from organic polymer with breakage and rearrangement of chemical bonds, then to well-defined crystal structure of good thermal stability. Furthermore, the weight loss occurred mainly among 300°C and 800°C with CH4, (CH3)4Si,(CH3)3SiH,(CH3)2SiH2 and other silane gases releasing from pyrolysis product leading to the conversion from organic polymers to inorganic ceramic. The pyrolysis product was converted into β-SiC crystal completely at 1400°C, and the crystallization of α-SiC phase occurred after 1550°C which might influence the stability of SiC matrix. Key words:polycarbosilane, organic precursor, pyrolysis kinetic behavior

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

388-392

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. K. Shetty, M. R. Pascucci, B. C. Mutsuddy, et al. Ceram. Eng. Sci. Proc., 6(7- 8) (1985)632-645.

Google Scholar

[2] Y. B. Pan, J. H. Qiu, M. Morita, et al. J. Mater. Sci., 33(1998)1233-1237.

Google Scholar

[3] A. G. Evans. J. Am. Ceram. Soc., 73(1990): 187-206.

Google Scholar

[4] R. Naslain. Compos. Sci. Technol., 64(2004): 155-170.

Google Scholar

[5] T. Tamura, T. Nakamura, K. Takahashi, et al. Ishikawajima Harima Engineering Review, 44 (4) (2004) 261-265.

Google Scholar

[6] M. W. Chen, H. P. Qiu, J. Jiao, et al. Key. Eng. Mater., 544(2013): 43-47.

Google Scholar

[7] E. Bouillon, F. Langlais, R. Pailler, et al. J. Mater. SCI., 26 (1991): 1333-1345.

Google Scholar

[8] J. Jiao, H. P. Qiu, X. Q. Li, et al. Key Eng. Mater., 512-515 (2012): 965-970.

Google Scholar

[9] H. B. Li, L. T. Zhang, L. F. Cheng, et al. J. Mater. Sci., 43 (2008): 2806–2811.

Google Scholar

[10] O. Funayama, Y. Tashiroy, A. Kamo, et al. J. Mater. Sci., 29 (1994): 4883-4888.

Google Scholar

[11] J. W. Park, S. C. Oh, H. P. Lee, Polym. Degrad. Stabil., 67 (2000) 535-540.

Google Scholar

[12] T. Ariia, S. Ichihara, H. Nakagawa, et al. Thermochimica Acta, 319 (1998) 139-149.

Google Scholar

[13] H. M. Yu, Q. H. Zhang, L. J. Qi, et al. Thermochimica Acta, 451 (2006) 10-15.

Google Scholar

[14] M. S. Alshehri, A. A. Fawaz, T. Ahamad. J. Anal. Appl. Pyrolysis. 101(2013) 215–221.

Google Scholar