The Kinetically Dominated Overgrowth of Flower-Like Silver Nanostructures and its Application for Surface-Enhanced Raman Scattering

Article Preview

Abstract:

Herein flower-like silver nanostructures with different size and ratio of hexagonal close-packed (HCP) to face-centered cubic (FCC) phase were synthetized. By comparing with the results utilizing different surfactants, the growth process of Ag nanostructures has been investigated. Flower-like Ag nanoparticles containing numerous hot spots could serve as excellent surface-enhanced Raman scattering (SERS) substrates, and the Raman signal of Rhodamine 6G with the concentration as low as 10-6 M can be recognized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

259-262

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Niu,L.Zhang,G. Xu: ACS Nano.Vol. 4 (2010), p.1987.

Google Scholar

[2] J. Zhang, M. R. Langille, and C. A. Mirkin: J. Am. Chem. Soc.. Vol. 132 (2010), p.12502

Google Scholar

[3] D.Yu, V. W.Yam: J. Am. Chem. Soc.. Vol. 126 (2004), p.13200

Google Scholar

[4] S. E.Skrabalak, L.Au,X.Li,et al.: Nature Protools. Vol. 2 (2007), p.2182

Google Scholar

[5] S.Peng, Y.Sun: Chem. Mater.. Vol. 22 (2010), p.6272

Google Scholar

[6] N. R.Jana, L.Gearheart, C. J.Murphy: Chem. Commun.. Vol. 14 (2001), p.617

Google Scholar

[7] X.Ye, L.Jin,H.Caglayan,J.Chen, et al.: B. ACS Nano. Vol. 6 (2012), p.2804

Google Scholar

[8] Q.Zhang,Y.Hu,S.Guo, et al.: Nano Letters.Vol. 10 (2010), p.5037

Google Scholar

[9] L.Lu,A.Kobayashi,K.Tawa,et al.: Chem. Mater.. Vol. 18 (2006), p.4894

Google Scholar

[10] J.Zhang,M. R.Langille, C. A.Mirki: J. Am. Chem. Soc.. Vol. 132 (2010), p.12502

Google Scholar

[11] J.Watt, S.Cheong, M. F.Toney, et al.: ACS Nano. Vol. 4 (2010), p.396

Google Scholar

[12] A.Mohanty, N.Garg, R.Jin.: Angew. Chem. Int. Ed.. Vol. 49 (2010), p.4962

Google Scholar

[13] H.Zhu,G.Li,Q.Chi,et al.: CrystEngComm. Vol. 14 (2012), p.1531

Google Scholar

[14] M. Alloisio, A. Demartini, C. Cuniberti, and G. Dellepiane: Sensor Letters. Vol 8 (2010) , p.405

Google Scholar

[15] N. Miura, D. R. Shankaran, K. V. Gobi, T. Kawaguchi, et al: Sensor Letters. Vol. 6 (2008), p.891

Google Scholar

[16] P. Kanitkar, P. Adhyapak, R. Aiyer, U. Mulik, et al.: Sensor Letters. Vol. 10 (2012), p.932

Google Scholar

[17] P. R.Sajanlal,T.Pradeep: Langmuir. Vol. 26 (2010), p.456

Google Scholar

[18] B.Lim, Y. Xia: Angew. Chem. Int. Ed.. Vol. 50 (2011), p.76

Google Scholar

[19] W. Zhang, T. Qiu, T. Hu, and P. K. Chu: Sensor Letters. Vol 8 (2010), p.395

Google Scholar

[20] T.Liu,D.Li,D.Yang, et al.: Langmuir. Vol. 27 (2011), p.6211

Google Scholar

[21] C. Yang,S.Li: J. Phys. Chem. C. Vol. 112 (2008), p.16400

Google Scholar

[22] X. Liu, J. Luo, J. Zhu: Nano Letters. Vol. 6 (2006), p.408

Google Scholar

[23] Y. Zou, D. Li, and D. Yang : Nanoscale research letters, Vol. 6 (2011), p.374

Google Scholar

[24] H. Liang, H. Yang, W. Wang, et al.: J. Am. Chem. Soc.. Vol. 131(2009), p.6068

Google Scholar