Modeling of Stress Distribution in Dental Implant in Frontal Part of Mandible

Article Preview

Abstract:

The aim of this work is the modeling of the stress distribution in cortical and trabecular bone of model frontal part of mandible by FEM analysis using linear static methods applying monocortical and bicortical fixation of dental implant. Depending on the position of the screw thread with regard to the bone surface, three different cases were simulated: exactly on the bone surface, 1,5 mm above and 0,5 mm below the surface of the cortical bone. It was found out that the stress field in the cortical part and the implant are considerably lower in the case of slightly recessed position in contrast with the above and normal position of the implant in both, monocortical and bicortical fixations. However, bicortical fixation in this case generates slightly lower stress field in the bone and implant parts than in monocortical fixation. Monocortical fixation is otherwise slightly more favorable from the viewpoint of maximum stresses in the bone in the case of exact and above positions of the implant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-140

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Lekholm, G.A. Zarb, Patient selection and preparation. In: Branemark, P-I, Zarb GA, Albrektsson T, editors. Tissue integrated prostheses: osseointegration in clinical dentistry, Chicago, Quintessence, (1985) 199-209.

Google Scholar

[2] C. Ulm, G. Tepper, R. Blahout, X. Rausch-fan, S. Hienz, M. Matejka, Characteristic features of trabecular bone in edentulous mandibles, Clin. Oral Impl. Res. 20 (2009) 594–600.

DOI: 10.1111/j.1600-0501.2008.01701.x

Google Scholar

[3] O.C. Zienkiewicz, D.W. Kelly, Finite elements-A unified problem-solving and information transfer method. In: Finite elements in biomechanics. Gallagher RH, Simon BR, Johnson PC, Gross IF, editors. New York: John Wiley & Sons, Ltd (1982).

Google Scholar

[4] H. Eufinger, N.C. Gellrich, D. Sandmann, J. Dieckmann, Descriptive and metric classification of jaw atrophy. An evaluation of 104 mandibles and 96 maxillae of dried skulls. Int J Oral Maxillofac Surg, 26 (1997) 8-23.

DOI: 10.1016/s0901-5027(97)80841-7

Google Scholar

[5] L. Himmlová, T. Dostálová, A. Kácovský, S. Konvičková, Influence of implant length and diameter on stress distribution: A finite element analysis, J. Prosthetic Dentistry, 91 (2004) 20-25.

DOI: 10.1016/j.prosdent.2003.08.008

Google Scholar

[6] I. Dvořák, V. Hrubý, J. Kadlec, M. Pospíchal, E. Svoboda, A. Martikaň, H. Konečná, I. Sedlák, Analýza zatížení kostní dřeně a kovového dentálniho implantátu, Akademia O.P. S (2010).

Google Scholar

[7] L. Himmlová, T. Goldmann, A. Kácovský, Stability of bone bed crest of loaded implant-comparison with finite element models, Česká stomatologie, 105 (2005) 66-72.

Google Scholar