Zinc Oxide Nano Walls Synthesized by Chemical Vapor Deposition

Article Preview

Abstract:

ZnO nanowalls were synthesized by chemical vapor deposition at temperature of 650 °C for 1 hour on the silicon substrate. The morphologies of samples were characterized by scanning electron microscopy (SEM). The result from X-ray diffraction (XRD) confirmed that the ZnO nanowalls were vertical c-axis orientation. A room temperature Photoluminescence peak at 378 nm is ultraviolet emission (UV) and the broad peak at wavelengths around 450-650 nm is corresponding to the green emission of ZnO nanostructure. This synthesis may be applicable for gas sensor or solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-131

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Klingshirn, The Luminescence of ZnO under High One- and Two-Quantum Excitation, Phys. Stat. Sol. B 71 (1975) 547-556.

DOI: 10.1002/pssb.2220710216

Google Scholar

[2] D. C. Look, B. Claflin, P-type doping and devices based on ZnO, Phys. Stat. Sol. (b) 241 (2004) 624-630.

DOI: 10.1002/pssb.200304271

Google Scholar

[3] A.B. Djurisic, Y. Chan, E.H. Li, Mater, Progress in the room-temperature optical function of semiconductors, Mater Sci. Eng. R38 (2002) 237-293.

Google Scholar

[4] K. Ellmer, Resistivity of polycrystalline zinc oxide films : current status and physical limit, J. Phys. D: Appl. Phys. 34 (2001) 3097-3108.

DOI: 10.1088/0022-3727/34/21/301

Google Scholar

[5] Y.F. Chen, D. Bagnall, Synthesis ZnO nanostructure, Mater. Sci. Eng. 75B, 190 (2000) 253.

Google Scholar

[6] D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng. B 80 : (2001) 383-387.

Google Scholar

[7] W. I. Park, G. C. Yi, S. J. Pennycook, Applications of highly ordered wheel like structured ZnO nanorods, Adv. Mater. 14 (2002) 1841-1843.

Google Scholar

[8] S. Chakrabarti, S. Chaudhuri, Persistent photoconductivity studies in nanostructured, Mater. Chem. Phys. 87 (2004) 196–200.

Google Scholar

[9] F. Liu, P. Cao, H. Zhang, C. Shen, Z. Wang, J. Cryst. Growth 274 (2005) 126–131.

Google Scholar

[10] S. Noothongkaew, S. Pukird, W. Sukkabot, Ki-Seok An, Zinc Oxide Nanostructures Synthesized by Thermal Oxidation of Zinc Powder on Si Substrate, Applied Mechanics and Materials Vol. 328 (2013) 710-714.

DOI: 10.4028/www.scientific.net/amm.328.710

Google Scholar

[11] Y. J. Hong, J. Yoo, Y. -J. Kim, C-H. Lee, and G. -C. Yi, Adv. Mater. 20 (2008) 1.

Google Scholar

[12] J. Maeng, G. Jo, M. Choe, W. Park, M. -Ki Kwon, S. -Ju Park and T. Lee, Structural and photoluminescence characterization of ZnO nanowalls grown by metal organic chemical vapor deposition, J. of Thin Solid Films, 518 (2009) 865-869.

DOI: 10.1016/j.tsf.2009.07.105

Google Scholar

[13] Lee Chul- Ho, Kim Yong-Jin and Lee Joohyung, Nanotechnology 22 (2011) 055205.

Google Scholar

[14] L. Min Yu, X. Hui Fan, J. Yi Shui and W. Yan, Research on the growth of ZnO nanowall by soft-solution route, Material Letters 68 (2012) 423-425.

DOI: 10.1016/j.matlet.2011.11.027

Google Scholar

[15] B. Megan M, Lu Ming-Yen and Lim Sung Keun, J. of Phys Chem Lett. 2 (2011) 1940-(1945).

Google Scholar

[16] Su SC, Lu Ym and Zhang ZZ, Structural optical and hydrogenation properties of ZnO nanowall networks grown on a Si (111) substrate by plasma-assisted molecular beam epitaxy, Physica B 403 (2008) 2590-2593.

DOI: 10.1016/j.physb.2008.01.040

Google Scholar

[17] Z. Yin, N. Chen, R. Dai, L. Liu, X. Zhang, X. Wang, J. Wu and C. Chai, On the formation of well-aligned ZnO nanowall networks by catalyst-free thermal evaporation method, J. of Crystal Growth 305 (2007) 296-301.

DOI: 10.1016/j.jcrysgro.2007.04.043

Google Scholar

[18] W. Tan, K. Radul, and Z. Lockman, Oxidation of etched Zn foil for the formation of ZnO nanostructure, J. of Alloys and Compounds 509 (2011) 6806-11.

DOI: 10.1016/j.jallcom.2011.03.055

Google Scholar

[19] Z. Wu, L. Qin and Q. Pan, Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries, J. of Alloys and Compounds 509 (2011) 9207-9213.

DOI: 10.1016/j.jallcom.2011.06.114

Google Scholar

[20] X. Yan, X. Tong, J. Wang, M. Zhang and L. Liang, Controllable synthesis of three-dimensional hierarchical porous ZnO film with mesoporous nanowalls, Mater. Letters 92 (2013) 165-168.

DOI: 10.1016/j.matlet.2012.10.079

Google Scholar

[21] Z. Li, Z. Hu, Li Jiang, H. Huang, F. Liu and X. Zhang, Synthesis and optical properties of three-dimensional nanowall ZnO film prepared by atmospheric pressure chemical vapor deposition, Applied Surface Science 258 (2012) 10175-10179.

DOI: 10.1016/j.apsusc.2012.06.101

Google Scholar

[22] H. Liang, Liu-zhan Pan and Zhao-jun Liu, Synthesis and photoluminescence propertiws on ZnO nanowires and nanorods by thermal oxidation of Zn precursors, Materials Letters 62 (2008) 1797-1800.

DOI: 10.1016/j.matlet.2007.10.010

Google Scholar

[23] Wen Yu and Chunxu Pan, Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism, Materials Chemistry and Physics 115 (2009) 74-79.

DOI: 10.1016/j.matchemphys.2008.11.022

Google Scholar

[24] G. Zhong, A. Kalam, A. Sad Al-Shihri, Q. Su, J. Li, G. Du, Low-temperature growth of well-aligned ZnO nanorods, Materials Research Bulletin 47 (2012) 1467-1470.

DOI: 10.1016/j.materresbull.2012.02.038

Google Scholar