Effects of Manganese Addition on Phase Formation Behavior and Dielectric Properties of ((K0.5Na0.5)0.935Li0.065)NbO3 Ceramics

Article Preview

Abstract:

In this study, ceramics in ((K0.5Na0.5)0.935Li0.065)NbO3 + xMnO2 (mol%) ceramics (when x = 0.0025, 0.0050, 0.01 and 0.015) were successfully prepared by the conventional mixed-oxide technique. The structural phase formation and microstructure were characterized by x-ray diffraction technique (XRD) and scanning electron microscopy (SEM). The crystal structure was identified by XRD as a single-phase perovskite structure, with tetragonal symmetry. The microstructure shows different grain size with different composition x. This study clearly showed that the Mn has influence on the dielectric properties in ((K0.5Na0.5)0.935Li0.065)NbO3 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-211

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4) (1999) 797-818.

Google Scholar

[2] T.R. Shrout and S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceramics. 19 (2007) 113-126.

DOI: 10.1007/s10832-007-9047-0

Google Scholar

[3] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Lead-free piezoceramics, Nature 432 (2004) 84-86.

DOI: 10.1038/nature03028

Google Scholar

[4] G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du and LM. Zheng, Perovskite (Na0. 5K0. 5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics, Appl. Phys. Lett. 88 (2006) 212908-212911.

DOI: 10.1063/1.2206554

Google Scholar

[5] C.W. Ahn, C.S. Park, C.H. Choi, S. Nahm, M.J. Yoo, H.G. Lee and S. Priya, Sintering behavior of lead-free (K, Na)NbO3-based piezoelectric ceramics, J. Am. Ceram. Soc. 92 (2006) 2033-(2038).

DOI: 10.1111/j.1551-2916.2009.03167.x

Google Scholar

[6] C.S. Yu and H.L. Hsieh, Piezoelectric properties of Pb(Ni1/3Sb2/3O3-PbTiO3-PbZrO3) ceramics modified with MnO2 additive, J. Eur. Ceram. Soc. 25, (2005) 2425-2427.

DOI: 10.1016/j.jeurceramsoc.2005.03.075

Google Scholar

[7] J. H. Moon, H. M. Jang and B. D. You, Densification behaviors and piezoelectric properties of MnO2, SiO2-doped Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics, J. Mater. Res. 8 (1993) 3184-3191.

DOI: 10.1111/j.1151-2916.1993.tb03825.x

Google Scholar

[8] S. Wongsaenmai, K. Kanchiang, S. Chandarak, Y. Laosiritaworn, S. Rujirawat and R. Yimnirun, Crystal structure and ferroelectric properties of Mn-doped (K0. 5Na0. 5)0. 935Li0. 065)NbO3 lead-free ceramics, Curr. App. Phys. 12 (2012) 418-421.

DOI: 10.1016/j.cap.2011.07.040

Google Scholar

[9] U. Flǜckiger, H. Arend and H. Oswald, Synthesis of KNbO3 Powder, J. Am. Ceram. Soc. 56(6) (1977) 575-577.

Google Scholar

[10] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32 (1976), 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[11] C. Galassi, E. Roncari, C. Capiani, F. Craciun, Processing and characterization of high Qm ferroelectric ceramics, J. Eur. Ceram. Soc. 19 (1999) 1237-1241.

DOI: 10.1016/s0955-2219(98)00410-5

Google Scholar

[12] C.L. Huang, R.J. Lin and H.L. Chen, Microwave dielectric properties and microstructures of CuO- and ZnO-doped LaAlO3 ceramics, Mater. Res. Bull. 37 (2002) 449-457.

DOI: 10.1016/s0025-5408(01)00818-2

Google Scholar

[13] P. Bomlai, P. Sinsap, S. Muensit and S. J. Milne, Effect of MnO on the phase development, microstructures and dielectric properties of 0. 95Na0. 5K0. 5NbO3-0. 05LiTaO3 ceramics. J. Am. Ceram. Soc. 91 (2008) 624-627.

DOI: 10.1111/j.1551-2916.2007.02130.x

Google Scholar

[14] E. Li, H. Kakemoto, S. Wada and T. Tsurumi, Effects of manganese addition on piezoelectric properties of the (K, Na, Li) (Nb, Ta, Sb)O3 lead-free ceramics, J. Ceram. Soc. Jpn. 115(4), (2007) 250-253.

DOI: 10.2109/jcersj.115.250

Google Scholar