Multilayer Microfluidic Electrokinetic Device with Vertical Embedded Electrodes

Article Preview

Abstract:

In this paper, we fabricated a novel multilayer microfluidic device with vertical embedded electrodes. The device was composed of printed circuit board (PCB) substrate with vertical embedded electrodes, the polyimide insulating layer and the polymethyl methacrylate (PMMA) with micro structures. The vertical electrodes were made by metal wire and integrated on the PCB substrate, they can be replaced when fail or broken. In addition, we investigated the relationship between electrodes height and the electro-osmotic flow by using numerical simulation. The results show that, with the increase electrodes height inside the microchannel, the speed of electro-osmotic flow increased and concentration field distribution improved significantly.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

593-599

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Changqing Yi, Cheuk-Wing Li, Shenglin Ji, Mengsu Yang. Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta 560 (2006) 1-23.

DOI: 10.1016/j.aca.2005.12.037

Google Scholar

[2] Xiaohui Li, Kathryn G. Klemic, Mark A. Reed, and Fred J. Sigworth. Microfluidic System for Planar Patch Clamp Electrode Arrays. Nano Lett, Vol. 6, No. 4, (2006).

DOI: 10.1021/nl060165r

Google Scholar

[3] Olga Ordeig, Pedro Ortiz, Xavier Muñoz-Berbel, Stefanie Demming, Stephanus Büttgenbach, César Fernández-Sánchez, and Andreu Llobera. Dual Photonic-Electrochemical Lab on a Chip for Online Simultaneous Absorbance and Amperometric Measurements. Anal. Chem. 2012, 84, 3546-3553.

DOI: 10.1021/ac203106x

Google Scholar

[4] Antoine Daridon, Valia Fascio, Jan Lichtenberg ·Rolf Wütrich, Hans Langen, Elisabeth Verpoorte ·Nico F. de Rooij. Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J Anal Chem. (2001) 371: 261-269.

DOI: 10.1007/s002160101004

Google Scholar

[5] R. St-Gelais, J. Masson, and Y. -A. Peter. All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems. APPLIED PHYSICS LETTERS 94, 243905, (2009).

DOI: 10.1063/1.3152286

Google Scholar

[6] A.R. Leeds, E.R. Van Keuren, M.E. Durst, T.W. Schneider, J.F. Currie, M. Paranjape. Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sensors and Actuators A 115 (2004) 571-580.

DOI: 10.1016/j.sna.2004.03.052

Google Scholar

[7] S. H. Ng, Z. F. Wang R. T. Tjeung, N. F. de Rooij Development of a multi-layer microelectrofluidic platform. Microsyst Technol (2007) 13: 1509-1515.

DOI: 10.1007/s00542-006-0341-6

Google Scholar

[8] Rimantas Kodzius, Kang Xiao, Jinbo Wud, Xin Yi, Xiuqing Gong, Ian G. Foulds, Weijia Wen. Inhibitory effect of common microfluidic materials on PCR outcome. Sensors and Actuators B, 161 (2012) 349-358.

DOI: 10.1016/j.snb.2011.10.044

Google Scholar

[9] Satoshi Amaya, Dzung Viet Dao and Susumu Sugiyama. Novel fabrication process for a monolithic PMMA torsion mirror and vertical comb actuator. JOURNAL OF MICROMECHANICS AND MICROENGINEERING. 21 (2011) 065032 (7pp).

DOI: 10.1088/0960-1317/21/6/065032

Google Scholar

[10] J.M. Li, C. Liu, J.S. Liu, Z. Xu, L.D. Wang. Multi-layer PMMA microfluidic chips with channel networks for liquid sample. Journal of Materials Processing Technology 209 (2009) 5487-5493.

DOI: 10.1016/j.jmatprotec.2009.05.003

Google Scholar

[11] Yang-Wei Lin, Huan-Tsung Chang. Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA. Journal of Chromatography A, 1073 (2005) 191-199.

DOI: 10.1016/j.chroma.2004.08.156

Google Scholar

[12] Zhi Chen, Zhengyin Yu, Gang Chen. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates. Talanta 81 (2010) 1325-1330.

DOI: 10.1016/j.talanta.2010.02.028

Google Scholar

[13] H. Hosseinkhannazer, L. Kostiuk, J. N. McMullin. Multilayer Biochips with Integrated Optics Replicated in PMMA and PDMS. Proc. of SPIE Vol. 6796, 67960B, (2007).

DOI: 10.1117/12.778515

Google Scholar

[14] Icíar González, Luis José Fernández, Tomás Enrique Gómez, Javier Berganzo, Jose Luis Soto, Alfredo Carrato . A polymeric chip for micromanipulation and particle sorting by ultrasounds based on a multilayer configuration. Sensors and Actuators B 144 (2010).

DOI: 10.1016/j.snb.2009.10.042

Google Scholar

[15] Bahador Farshchian, Sooyeon Park, Junseo Choi, Alborz Amirsadeghi, Jaejong Lee and Sunggook Park. 3D nanomolding for lab-on-a-chip applications. Lab Chip, 2012, 12, 4764-4771.

DOI: 10.1039/c2lc40572e

Google Scholar

[16] Huizhi Fan, Zhi Chen, Luyan Zhang, Pengyuan Yang, Gang Chen. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores. Journal of Chromatography A, 1179 (2008) 224-228.

DOI: 10.1016/j.chroma.2007.11.065

Google Scholar

[17] N. Scott Lynn, Charles S. Henry and David S. Dandy. Microfluidic mixing via transverse electrokinetic effects. Microfluid Nanofluid (2008) 5: 493-505.

DOI: 10.1007/s10404-008-0258-8

Google Scholar

[18] Dhanuka P. Wasalathanthri, Vigneshwaran Mani, Chi K. Tang, and James F. Rusling. Microfluidic Electrochemical Array for Detection of Reactive Metabolites Formed by Cytochrome P450 Enzymes. Anal Chem. 2011, 83, 9499-9506.

DOI: 10.1021/ac202269t

Google Scholar

[19] He Zhang, Xiaowei Liu, Li Tian, Xiaowei Han. Organic Solvent Fumigation Bonding for Poly(methyl methacrylate) Microfluidic Device. CSMNT (2013).

DOI: 10.1109/icoom.2013.6626495

Google Scholar

[20] von Smoluchowski, M. Elektrische Endosmose und Strömungsströme. Handbuch der Elektrizität und des Magnetismus. Leipzig, 1921; pp.366-428.

Google Scholar

[21] Rice C L, Whit ehead R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys Chem, 1965, 69 (11): 4017-4024.

DOI: 10.1021/j100895a062

Google Scholar