[1]
Changqing Yi, Cheuk-Wing Li, Shenglin Ji, Mengsu Yang. Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta 560 (2006) 1-23.
DOI: 10.1016/j.aca.2005.12.037
Google Scholar
[2]
Xiaohui Li, Kathryn G. Klemic, Mark A. Reed, and Fred J. Sigworth. Microfluidic System for Planar Patch Clamp Electrode Arrays. Nano Lett, Vol. 6, No. 4, (2006).
DOI: 10.1021/nl060165r
Google Scholar
[3]
Olga Ordeig, Pedro Ortiz, Xavier Muñoz-Berbel, Stefanie Demming, Stephanus Büttgenbach, César Fernández-Sánchez, and Andreu Llobera. Dual Photonic-Electrochemical Lab on a Chip for Online Simultaneous Absorbance and Amperometric Measurements. Anal. Chem. 2012, 84, 3546-3553.
DOI: 10.1021/ac203106x
Google Scholar
[4]
Antoine Daridon, Valia Fascio, Jan Lichtenberg ·Rolf Wütrich, Hans Langen, Elisabeth Verpoorte ·Nico F. de Rooij. Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J Anal Chem. (2001) 371: 261-269.
DOI: 10.1007/s002160101004
Google Scholar
[5]
R. St-Gelais, J. Masson, and Y. -A. Peter. All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems. APPLIED PHYSICS LETTERS 94, 243905, (2009).
DOI: 10.1063/1.3152286
Google Scholar
[6]
A.R. Leeds, E.R. Van Keuren, M.E. Durst, T.W. Schneider, J.F. Currie, M. Paranjape. Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sensors and Actuators A 115 (2004) 571-580.
DOI: 10.1016/j.sna.2004.03.052
Google Scholar
[7]
S. H. Ng, Z. F. Wang R. T. Tjeung, N. F. de Rooij Development of a multi-layer microelectrofluidic platform. Microsyst Technol (2007) 13: 1509-1515.
DOI: 10.1007/s00542-006-0341-6
Google Scholar
[8]
Rimantas Kodzius, Kang Xiao, Jinbo Wud, Xin Yi, Xiuqing Gong, Ian G. Foulds, Weijia Wen. Inhibitory effect of common microfluidic materials on PCR outcome. Sensors and Actuators B, 161 (2012) 349-358.
DOI: 10.1016/j.snb.2011.10.044
Google Scholar
[9]
Satoshi Amaya, Dzung Viet Dao and Susumu Sugiyama. Novel fabrication process for a monolithic PMMA torsion mirror and vertical comb actuator. JOURNAL OF MICROMECHANICS AND MICROENGINEERING. 21 (2011) 065032 (7pp).
DOI: 10.1088/0960-1317/21/6/065032
Google Scholar
[10]
J.M. Li, C. Liu, J.S. Liu, Z. Xu, L.D. Wang. Multi-layer PMMA microfluidic chips with channel networks for liquid sample. Journal of Materials Processing Technology 209 (2009) 5487-5493.
DOI: 10.1016/j.jmatprotec.2009.05.003
Google Scholar
[11]
Yang-Wei Lin, Huan-Tsung Chang. Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA. Journal of Chromatography A, 1073 (2005) 191-199.
DOI: 10.1016/j.chroma.2004.08.156
Google Scholar
[12]
Zhi Chen, Zhengyin Yu, Gang Chen. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates. Talanta 81 (2010) 1325-1330.
DOI: 10.1016/j.talanta.2010.02.028
Google Scholar
[13]
H. Hosseinkhannazer, L. Kostiuk, J. N. McMullin. Multilayer Biochips with Integrated Optics Replicated in PMMA and PDMS. Proc. of SPIE Vol. 6796, 67960B, (2007).
DOI: 10.1117/12.778515
Google Scholar
[14]
Icíar González, Luis José Fernández, Tomás Enrique Gómez, Javier Berganzo, Jose Luis Soto, Alfredo Carrato . A polymeric chip for micromanipulation and particle sorting by ultrasounds based on a multilayer configuration. Sensors and Actuators B 144 (2010).
DOI: 10.1016/j.snb.2009.10.042
Google Scholar
[15]
Bahador Farshchian, Sooyeon Park, Junseo Choi, Alborz Amirsadeghi, Jaejong Lee and Sunggook Park. 3D nanomolding for lab-on-a-chip applications. Lab Chip, 2012, 12, 4764-4771.
DOI: 10.1039/c2lc40572e
Google Scholar
[16]
Huizhi Fan, Zhi Chen, Luyan Zhang, Pengyuan Yang, Gang Chen. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores. Journal of Chromatography A, 1179 (2008) 224-228.
DOI: 10.1016/j.chroma.2007.11.065
Google Scholar
[17]
N. Scott Lynn, Charles S. Henry and David S. Dandy. Microfluidic mixing via transverse electrokinetic effects. Microfluid Nanofluid (2008) 5: 493-505.
DOI: 10.1007/s10404-008-0258-8
Google Scholar
[18]
Dhanuka P. Wasalathanthri, Vigneshwaran Mani, Chi K. Tang, and James F. Rusling. Microfluidic Electrochemical Array for Detection of Reactive Metabolites Formed by Cytochrome P450 Enzymes. Anal Chem. 2011, 83, 9499-9506.
DOI: 10.1021/ac202269t
Google Scholar
[19]
He Zhang, Xiaowei Liu, Li Tian, Xiaowei Han. Organic Solvent Fumigation Bonding for Poly(methyl methacrylate) Microfluidic Device. CSMNT (2013).
DOI: 10.1109/icoom.2013.6626495
Google Scholar
[20]
von Smoluchowski, M. Elektrische Endosmose und Strömungsströme. Handbuch der Elektrizität und des Magnetismus. Leipzig, 1921; pp.366-428.
Google Scholar
[21]
Rice C L, Whit ehead R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys Chem, 1965, 69 (11): 4017-4024.
DOI: 10.1021/j100895a062
Google Scholar