[1]
C. Weddeling, M. Marr, A. Brosius, and A. E. Tekkaya, Integration von umformen, trennen und fügen für die flexible fertigung von leichten ragwerkstrukturen, Fortschrittsbericht VDI, vol. 1, p.169 – 191, (2011).
Google Scholar
[2]
S. Schäfer, S. Abedini, P. Groche, C. Ludwig, F. Bäcker, E. Abele, B. Jalizi, C. Müller, and V. Kaune, Joining techniques using the technology of the CRC 666, Bauingenieur, vol. 1, p.8 – 13, (2013).
Google Scholar
[3]
R. Kebriaei, J. Frischkorn, S. Reese, T. Husmann, H. Meier, H. Moll, W. Theisen, Numerical modelling of powder metallurgical coatings on ring-shaped parts integrated with ring rolling, Journal of Materials Processing Technology, vol. 213, pp.2015-2032, (2013).
DOI: 10.1016/j.jmatprotec.2013.05.023
Google Scholar
[4]
R. Kebriaei, J. Frischkorn, S. Reese, H. Moll, W. Theisen, T. Husmann, H. Meier, Coupled thermo-mechanical analysis of process-integrated powder coating by means of hot rolling, Key Engineering Materials, vol. 504-506, pp.193-198, (2012).
DOI: 10.4028/www.scientific.net/kem.504-506.193
Google Scholar
[5]
K. I. Mori, N. Bay, L. Fratini, F. Micari, and A. E. Tekkaya, Joining by plastic deformation, CIRP Annals-Manufacturing Technology, vol., In press, (2013).
DOI: 10.1016/j.cirp.2013.05.004
Google Scholar
[6]
R. Wirth, Focused ion beam (fib) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chemical Geology, vol. 261, p.217 – 229, (2009).
DOI: 10.1016/j.chemgeo.2008.05.019
Google Scholar
[7]
H. -Y. Wu, S. Lee, and J. -Y. Wang, Solid-state bonding of iron-based alloys, steelbrass, and aluminum alloys, Journal of Materials Processing Technology, vol. 75, p.173 – 179, (1998).
DOI: 10.1016/s0924-0136(97)00323-3
Google Scholar
[8]
I. Topic, H. Höppel, and M. Gken, Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding, Journal of Materials Science, vol. 43, p.7320 –7325, (2008).
DOI: 10.1007/s10853-008-2754-3
Google Scholar
[9]
L. Chang, J. Cho, and S. Kang, Microstructure and mechanical properties of AM31 magnesium alloys processed by differential speed rolling, Journal of Materials Processing Technology, vol. 211, p.1527 – 1533, (2011).
DOI: 10.1016/j.jmatprotec.2011.04.003
Google Scholar
[10]
S. Groh, E. Marin, M. Horstemeyer, and H. Zbib, Multiscale modeling of the plasticity in an aluminum single crystal, International Journal of Plasticity, vol. 25, p.1456 – 1473, (2009).
DOI: 10.1016/j.ijplas.2008.11.003
Google Scholar
[11]
R. Phillips, Multiscale modeling in the mechanics of materials, Current Opinion in Solid State and Materials Science, vol. 3, p.526 – 532, (1998).
DOI: 10.1016/s1359-0286(98)80020-x
Google Scholar
[12]
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., and Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia, vol. 58, p.1152 – 1211, (2010).
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar
[13]
Zaafarani, N., Raabe, D., Singh, R., Roters, F., and Zaefferer, S., Three-dimensional investigation of the texture and microstructure below a nanoindent in a cu single crystal using 3d EBSD and crystal plasticity finite element simulations, Acta Materialia, vol. 54, p.1863 – 1876, (2006).
DOI: 10.1016/j.actamat.2005.12.014
Google Scholar