[1]
L. Xu, M.W. Lu and Q. Cao: Bifurcation and Chaos of a Harmonically Excited Oscillator With Both Stiffness and Viscous Damping Piecewise Linearities by Incremental Harmonic Balance Method, Vol. 26 (2003) No. 4, pp.874-883.
DOI: 10.1016/s0022-460x(02)01194-x
Google Scholar
[2]
A. Raghothama and S. Narayanan. Bifurcation and Chaos of an Articulated Loading Platform With Piecewise Non-linear Stiffness using the Incremental Harmonic Balance Method, Vol. 27 (2000) No. 9, pp.1085-1105.
DOI: 10.1016/s0029-8018(99)00025-6
Google Scholar
[3]
F.L. Litvin, D. Vecchiato and A. Demenego: Design of One Stage Planetary Gear Train With Improved Conditions of Load Distribution and Reduced Transmission Errors, Vol. 12 (2002) No. 4, pp.751-758.
DOI: 10.1115/1.1515797
Google Scholar
[4]
B. Irwanto, H.J. Hardtke and D. Pawandenat: An Efficient Technique for The Computation of Eigenvalue and Eigenvector Derivatives of Cyclic Structures, Vol. 8 (2003) No. 1, pp.2401-2406.
DOI: 10.1016/s0045-7949(03)00302-x
Google Scholar
[5]
P. Yang, D.J. Nin and J.C. Yang: A Fuzzy Evaluating Approach for Load Sharing Characteristics of EGT Based On Manufacturing and Assembly Error Characteristics, Vol. 2 (2005) No. 6, pp.1202-1123.
Google Scholar
[6]
V. Abousleiman and P. Velex: A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets, Vol. 4 (2006) No. 1, pp.731-754.
DOI: 10.1016/j.mechmachtheory.2005.09.005
Google Scholar
[7]
F. Chaari, T. Fakhfakh and M. Haddar: Dynamic Analysis of a Planetary Gear Failure Caused by Tooth Pitting and Cracking, Vol. 6 (2006) No. 2, pp.78-83.
DOI: 10.1361/154770206x99343
Google Scholar
[8]
S.V. Canchi and R.G. Parker: Effect of Ring-Planet Mesh Phasing and Contact Ratio on the Parametric Instabilities of a Planetary Gear Ring, Vol. 30 (2008) No. 10, pp.31-36.
DOI: 10.1115/1.2803716
Google Scholar
[9]
A. Bodas and A. Kahraman. Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets, Vol. 47 (2004) No. 3, pp.913-921.
DOI: 10.1299/jsmec.47.908
Google Scholar
[10]
H.J. Cheng, H.S. Zhou and C.H. Huang: Integration of Finite Element Analysis and Optimum Design on Gear Systems, Vol. 38 (2004) No. 12, pp.182-195.
Google Scholar
[11]
A. Bajer and L. Demkowicz: Dynamic Contact/Impact Problems, Energy Conservation, and Planetary Gear Trains, Vol. 17 (2002) No. 6, pp.462-469.
DOI: 10.1016/s0045-7825(02)00359-6
Google Scholar
[12]
A. Kahraman, A.A. Kharazi and M. Umrani: A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims, Vol. 26 (2004) No. 2, pp.761-778.
DOI: 10.1016/s0022-460x(03)00122-6
Google Scholar
[13]
Daniele Vecchiato: Tooth Contact Analysis of a Misaligned Isostatic Planetary Gear Train, Vol. 39 (2006) No. 22, pp.621-635.
DOI: 10.1016/j.mechmachtheory.2005.10.001
Google Scholar
[14]
G. Liu: Nonlinear Dynamics of Multi-mesh Gear Systems, Vol. 11 (2007) No. 8, pp.67-101.
Google Scholar