[1]
H.V.S. Gangarao, P.V. Vijay, Aging of structural composites under varying environmental conditions. In: Proceedings of the third international symposium on non-metallic (FRP) reinforcement for concrete structures (FRPRCS-3), Sapporo, Japan, Oct. 14–16, 2, (1997).
DOI: 10.1007/bf02480431
Google Scholar
[2]
T. Uomoto, Durability design of GFRP rods for concrete reinforcement. In: Proceedings of the sixth international symposium on FRP reinforcement for concrete structures (FRPRCS-6), Singapore, July 8–10, (2003) 37–50.
DOI: 10.1142/9789812704863_0003
Google Scholar
[3]
V.M. Karbhari, J.M. Chin, D. Hunston, B. Benmokrane, T. Juska, R. Morgan, et al. Durability gap analysis for fiber–reinforced polymer composites in civil infrastructure. ASCE J Compos Constr. 7/3 (2003) 238–47.
DOI: 10.1061/(asce)1090-0268(2003)7:3(238)
Google Scholar
[4]
K. Liao, C.R. Schultheisz, D.L. Hunston, Effects of environmental aging on the properties of pultruded GFRP. Composites B 30 (1999) 485–93.
DOI: 10.1016/s1359-8368(99)00013-x
Google Scholar
[5]
W. Chu, L. Wu, V.M. Karbhari, Durability evaluation of moderate temperature cured E-glass/vinylester systems. Comp Struct 66 (2004) 367–76.
DOI: 10.1016/j.compstruct.2004.04.058
Google Scholar
[6]
G. Nkurunziza, A. Debaiky, P. Cousin, B. Benmokrane, Durability of GFRP bars: a critical review of the literature. J Prog Struct Engrg Mater 7 (2005) 194–209.
DOI: 10.1002/pse.205
Google Scholar
[7]
F. Micelli, A. Nanni, Durability of FRP rods for concrete structures. Constr Build Mater 18 (2004) 491–503.
DOI: 10.1016/j.conbuildmat.2004.04.012
Google Scholar
[8]
Y. Chen, J.F. Davalos, I. Ray, H.Y. Kim, Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Comp Struct 78 (2007) 101–11.
DOI: 10.1016/j.compstruct.2005.08.015
Google Scholar
[9]
A. Abbasi, P.J. Hogg, Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete. Composites B 36 (2005) 394–404.
DOI: 10.1016/j.compositesb.2005.01.006
Google Scholar
[10]
B. Abdel-Magid, S. Ziaee, K. Gass, M. Schneider, The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites. Comp Struct 71 (2005) 320–26.
DOI: 10.1016/j.compstruct.2005.09.022
Google Scholar
[11]
B. Benmokrane, P. Wang, T.M. Ton-That, H. Rahman, J.F. Robert, Durability of glass fiber–reinforced polymer reinforcing bars in concrete environment. ASCE J Compos Constr 6, 3 (2002) 143–53.
DOI: 10.1061/(asce)1090-0268(2002)6:3(143)
Google Scholar
[12]
G. Nkurunziza, B. Benmokrane, A.S. Debaiky, R. Masmoudi, Effect of creep and environment on long-term tensile properties of glass FRP reinforcing bars. In: Proceedings of the fourth international conference on advanced composite materials in bridges and structures (ACMBS), Calgary, Canada, July 20–23, (2004).
Google Scholar
[13]
A. Katz, N. Berman, L.C. Bank, Effect of high temperature on bond strength of FRP rebars. ASCE J Compos Constr 3, 2 (1999) 73–81.
DOI: 10.1061/(asce)1090-0268(1999)3:2(73)
Google Scholar
[14]
S.H. Alsayed, Y.A. Al-Salloum, T.H. Almusallam, Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Composites B 31 (2000) 555–67.
DOI: 10.1016/s1359-8368(99)00049-9
Google Scholar
[15]
L. Van Den Einde, L. Zhao, F. Seiblec, Use of FRP composites in civil structural applications. Constr Build Mater 17 (2003) 389–403.
DOI: 10.1016/s0950-0618(03)00040-0
Google Scholar
[16]
V.M. Karbhari, M.A. Abanilla, Design factors, reliability, and durability prediction of wet layup carbon/epoxy used in external strengthening. Composites Part B, 38 (2007) 10–23.
DOI: 10.1016/j.compositesb.2006.06.001
Google Scholar
[17]
A. Avorio, A. Borri, M. Corradi, Ricerche per la ricostruzione: Iniziative a carattere tecnico e scientifico a supporto della ricostruzione, Dei ed., Tipografia del Genio Civile, Rome, (2003).
Google Scholar
[18]
C.G. Papanicolaou, T.C. Triantafillou, M. Papathanasiou, K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Materials and Structures, 41 (2008) 143–157.
DOI: 10.1617/s11527-007-9226-0
Google Scholar
[19]
A. Prota, M. Marcari, G. Fabbrocino, G. Manfredi, C. Aldea, Experimental In-Plane Behavior of Tuff Masonry Strengthened with Cementitious Matrix–Grid Composites Journal of Composites for Construction, 10, 3 (2006) 223-233.
DOI: 10.1061/(asce)1090-0268(2006)10:3(223)
Google Scholar
[20]
A. Borri, G. Castori, M. Corradi, R. Sisti, Masonry wall panels with GFRP and steel-cord strengthening subjected to cyclic shear: An experimental study. Construct and Building Mater, 56 (2014) 63-73.
DOI: 10.1016/j.conbuildmat.2014.01.056
Google Scholar
[21]
M. Corradi, A. Borri, G. Castori, R. Sisti, Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Composites, part B; 64 (2014) 33-42.
DOI: 10.1016/j.compositesb.2014.03.022
Google Scholar
[22]
ASTM D2247 - 11 Standard Practice for Testing Water Resistance of Coatings in 100% Relative Humidity.
Google Scholar
[23]
ASTM D3916 - 08 Standard Test Method for Tensile Properties of Pultruded Glass-Fiber-Reinforced Plastic Rod.
DOI: 10.1520/d3916-02
Google Scholar
[24]
L.C. Bank, Composites for Construction : Structural Design with FRP Materials. · John Wiley & Sons, (2006).
Google Scholar