Tuning the Shear Modulus of Single-Walled Carbon Nanotube by Feeding Van Der Waals Molecules

Article Preview

Abstract:

Torsional buckling of single-walled carbon nanotubes filled with light weight molecular via molecular dynamics is reported. The model accounts for the deformation of CNTs, and interactions among gas molecules; between gas and carbon atoms. The effect of particle loading is predicted to significantly change CNT’s critical torsional moment and stiffness. This is therefore an approach by which the torsional mechanical properties and oscillation frequencies of carbon nanotubes may be tuned. Importantly, the predicted changes in torsional siffness are unique relative to conventional linear elastic materials and are indicative of nonlinear oscillations due to nonlinear mechanical effects. CNTs subjects to large deformations reversibly switch into different morphological patterns. Each shape change corresponds to an abrupt release of energy and a singularity in the stress-strain curve. At higher torsional angle, van der Waals (VDW: He, Ar, H2) molecules reveal a stability effect on carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

722-727

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hongjie D, Eric W, Charles M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes, Science 1996; 272(26): 523-526.

DOI: 10.1126/science.272.5261.523

Google Scholar

[2] T. W Ebbesen, Annu. Rev Mater. Sci. 24 (1994) 235.

Google Scholar

[3] Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., Heben M. J. Storage of hydrogen in single-walled carbon nanotubes , Nature 1997; 386: 377-379.

DOI: 10.1038/386377a0

Google Scholar

[4] Farida D and Dominique L, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chem. Phys. 1998; 109(12): 4981-4984.

DOI: 10.1063/1.477109

Google Scholar

[5] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W Bennett, H. F Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes. Nature 1996 ; 382(6586): 54-56.

DOI: 10.1038/382054a0

Google Scholar

[6] M. M. Treacy, T. W. Ebbesen, J. M. Gibson. exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996; 381(20): 678- 680.

DOI: 10.1038/381678a0

Google Scholar

[7] B. I. Yakobson, C. J. Brabec, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Phys Rev Lett 1996; 76(14): 2511-2514.

DOI: 10.1103/physrevlett.76.2511

Google Scholar

[8] C. L. Zhang, H. S. Shen. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 2006; 44(13): 2608–2616.

DOI: 10.1016/j.carbon.2006.04.037

Google Scholar

[9] C. Q. Ru. Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys Rev B 2000; 62(15): 10405-10408.

DOI: 10.1103/physrevb.62.10405

Google Scholar

[10] Chen T. L., Liu B., Wu J., Huang Y, Jiang H., Hwang K. C., J. Mech. Phys. of Solid. 2008; 56: 3224-3241.

Google Scholar

[11] L. Dai, Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications, Springer-Verlag, Germany, 2004 (ISBN:1852335106 ).

Google Scholar

[12] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit and L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics a-Materials Science & Processing 1999, 69:255-260.

DOI: 10.1007/s003390050999

Google Scholar

[13] P. Calvert. Nanotube composites: A recipe for strength. Nature 1999; 399(6733): 210-211.

DOI: 10.1038/20326

Google Scholar

[14] Robert J. Chen, Yuegang Z, Dunwei W, Hongjie D, Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization, J. Am. Chem. Soc. 2011; 123(16): 3838-3839.

DOI: 10.1021/ja010172b

Google Scholar

[15] Collins P. G. and Avouris P., Nanotubes for electronics, Sci. Am. 283, pp.38-45, (2000).

Google Scholar

[16] Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., Fully collapsed carbon nanotubes, Nature 1995; 377(6545): 135-138.

DOI: 10.1038/377135a0

Google Scholar

[17] Min-Feng Yu, Tomasz Kowalewski, and Rodney S. Ruoff, Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy, Phys. Rev. Lett. 2001; 86(1): 87-90.

DOI: 10.1103/physrevlett.86.87

Google Scholar

[18] Zhang P. H. and Crespi V. H., Phys. Rev. Lett. 1999; 83: 1791-1794.

Google Scholar

[19] Rotkin V. and Gogotsi Y., Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes, Mater. Res. Innovations 2002; 5(5): 191-200.

DOI: 10.1007/s10019-001-0152-4

Google Scholar

[20] Rappè A. K., Casewit C. J., Colwell K. S., Goddard W. A. III, Skiff W. M., UFF, UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc. 1992; 114(25) : 10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[21] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley and Sons, New York, 1992 (ISBN: 0471819662).

Google Scholar

[22] Müller-Plathe, F., J Chem. Phys., 1997; 106: 6082-6085.

Google Scholar

[23] Clifford W. Padgett and Donald W. Brenner, Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes, Nano Lett., 2004; 4(6): 1051-1053.

DOI: 10.1021/nl049645d

Google Scholar

[24] Mar´ıa J. L´opez, Angel Rubio, and Julio A. Alonso, Deformations and Thermal Stability of Carbon Nanotube Ropes, arXiv 2003; cond-mat/0303648v1.

Google Scholar

[25] Gang Wu, Baowen Li, Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations, arXiv 2007; 0707. 4241v1.

Google Scholar

[26] Chun-Hung Chen and Yung-Chun Lee, Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating, J. Micromech. Microeng. 2007; 17: 1252-1256.

DOI: 10.1088/0960-1317/17/7/006

Google Scholar

[27] Robert E.T., Donald W.N., Bobby G.S. and Ralph C.M., Dynamics of flow inside carbon nanotubes, Nanotechnology 1997; 8: 112.

Google Scholar

[28] Y. Quo, N Karasawa and W. A. Goddard, Prediction of fullerene packing in C60 and C70 crystals, Nature 1991; 351: 464-467.

DOI: 10.1038/351464a0

Google Scholar

[29] R. Richert and A. Blumen, Disorder Effects on Relaxational Processes: Glasses, Polymers, Proteins, Springer Berlin, New York, 1994(ID: 10549360).

DOI: 10.1007/978-3-642-78576-4

Google Scholar

[30] P. M. Ajayan, L. S. Schadler, C. Giannaris and A. Rubio, Adv. Mater. 2000; 12: 750.

Google Scholar

[31] A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, Compos. Mechanical and electrical properties of a MWNT/epoxy composite. Sci. Technol. 2002; 62(15): 1993-(1998).

DOI: 10.1016/s0266-3538(02)00129-x

Google Scholar

[32] S. U. S. Choi1, Z. G. Zhang2, W. Yu1, F. E. Lockwood2, and E. A. Grulke. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. 2001; Lett. 79: 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[33] M. J. Biercuk1, M. C. Llaguno1, M. Radosavljevic1, J. K. Hyun1, A. T. Johnson1, and J. E. Fischer. Carbon nanotube composites for thermal management. Appl. Phys. 2002; Lett. 80.

Google Scholar

[34] Byeong-Woo Jeong, Jang-Keun Lim, and Susan B. Sinnott, Torsional stiffening of carbon nanotube systems, Appl. Phys. Lett. 2007; 91(9): 093102-093104.

Google Scholar

[35] H. Allen, P. Bulson. Background to Buckling. London: McGraw-Hill; (1980).

Google Scholar

[36] S. Timoshenko,J. Gere. Theory of Elastic Stability. New York: McGraw-Hill; (1988).

Google Scholar