[1]
T.-H. Fang and W.-J. Changb, "Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique," Microelectronic Engineering, vol. 65, pp.231-238, 2003.
DOI: 10.1016/s0167-9317(02)00885-7
Google Scholar
[2]
P. G. Sanders, J. A. Eastman, and R. Weertman, "Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium," Acta Materialia, vol. 45, pp.4019-4025, 1997.
DOI: 10.1016/s1359-6454(97)00092-x
Google Scholar
[3]
B.-K. Jang and H. Matsubara, "Hardness and Young's modulus of nanoporous EB-PVD YSZ coatings by nanoindentation," Journal of Alloys and Compounds, vol. 402, pp.237-241, 2005.
DOI: 10.1016/j.jallcom.2005.02.064
Google Scholar
[4]
M. Zhao, X. Chen, Y. Xiang, J. J. Vlassak, D. Lee, N. Ogasawara, et al., "Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation," Acta Materialia, vol. 55, pp.6260-6274, 2007.
DOI: 10.1016/j.actamat.2007.07.045
Google Scholar
[5]
A. T. Al-Halhouli, I. Kampen, T. Krah, and S. Büttgenbach, "Nanoindentation testing of SU-8 photoresist mechanical properties," Microelectronic Engineering, vol. 85, pp.942-944, 2008.
DOI: 10.1016/j.mee.2008.01.033
Google Scholar
[6]
M. Yu, J. Zhang, D. Li, Q. Meng, and W. Li, "Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD," Surface and Coatings Technology, vol. 201, pp.1243-1249, 2006.
DOI: 10.1016/j.surfcoat.2006.01.047
Google Scholar
[7]
G. Binnig and C. F. Quate, "Atomic Force Microscope," Physical Review Letters, vol. 56, p.930, 1986.
DOI: 10.1103/physrevlett.56.930
Google Scholar
[8]
D. Li, H. Yamamoto, H. Takeuchi, and Y. Kawashima, "A novel method for modifying AFM probe to investigate the interaction between biomaterial polymers (Chitosan-coated PLGA) and mucin film," European Journal of Pharmaceutics and Biopharmaceutics, vol. 75, pp.277-283, 2010.
DOI: 10.1016/j.ejpb.2010.02.013
Google Scholar
[9]
N. Saka, T. Eusner, and J.-H. Chun, "Nano-scale scratching in chemical–mechanical polishing," CIRP Annals - Manufacturing Technology, vol. 57, pp.341-344, 2008.
DOI: 10.1016/j.cirp.2008.03.098
Google Scholar
[10]
Y. Gan, "Invited Review Article: A review of techniques for attaching micro- and nanoparticles to a probe's tip for surface force and near-field optical measurements," Review of Scientific Instruments, vol. 78, p.081101, 2007.
DOI: 10.1063/1.2754076
Google Scholar
[11]
D. Beegan, S. Chowdhury, and M. T. Laugier, "A nanoindentation study of copper films on oxidised silicon substrates," Surface and Coatings Technology, vol. 176, pp.124-130, 2003.
DOI: 10.1016/s0257-8972(03)00774-6
Google Scholar
[12]
D. Beegan, S. Chowdhury, and M. T. Laugier, "The nanoindentation behaviour of hard and soft films on silicon substrates," Thin Solid Films, vol. 466, pp.167-174, 2004.
DOI: 10.1016/j.tsf.2004.03.006
Google Scholar
[13]
Y. M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin, "Edge effect during nanoindentation of thin copper films," Materials Letters, vol. 59, pp.1434-1438, 2005.
DOI: 10.1016/j.matlet.2004.08.043
Google Scholar
[14]
A. A. Tseng, S. Jou, A. Notargiacomo, and T. P. Chen, "Recent Developments in Tip-Based Nanofabrication and Its Roadmap," Journal of Nanoscience and Nanotechnology, vol. 8, pp.2167-2186, 2008.
DOI: 10.1166/jnn.2008.243
Google Scholar
[15]
C.-C. A. Chen and J.-R. Chen, "Nanopattern Fabrication by Tip Plowing Technology on 55 nm Grating with Stitching Image Method," Journal of Nanoscience and Nanotechnology, vol. 10, pp.1-6, 2010.
DOI: 10.1166/jnn.2010.2354
Google Scholar
[16]
J.-E. Schmutz, H. Fuchs, and H. Hölscher, "Measuring wear by combining friction force and dynamic force microscopy," Wear, vol. 268, pp.526-532, 2010.
DOI: 10.1016/j.wear.2009.09.010
Google Scholar
[17]
F. Sansoz and T. Gang, "A force-matching method for quantitative hardness measurements by atomic force microscopy with diamond-tipped sapphire cantilevers," Ultramicroscopy, vol. 111, pp.11-9, Dec 2010.
DOI: 10.1016/j.ultramic.2010.09.012
Google Scholar
[18]
W.-E. Fu, C.-C. A. Chen, K.-W. Huang, and Y.-Q. Chang, "Material removal mechanism of Cu-CMP studied by nano-scratching under various environmental conditions," Wear, vol. 278-279, pp.87-93, 2012.
DOI: 10.1016/j.wear.2012.01.003
Google Scholar
[19]
W.-E. Fu, C.-C. A. Chen, K.-W. Huang, Y.-Q. Chang, T.-Y. Lin and C.-S. Chang, "Nano-scratch evaluations of copper chemical mechanical polishing," Thin Solid Films, vol. 529, pp.306-311, 2013.
DOI: 10.1016/j.tsf.2012.03.057
Google Scholar
[20]
C.-C. Chao, C.-C. A. Chen, K.-W. Huang, and W.-E. Fu, "State-of-the-Art Review of Tip-Grit AFM Force Analysis Methods for CMP Process," The 16th International Conference on Advances in Materials & Processing Technologies, vol. S34_3, 2013.
Google Scholar
[21]
W.-E. Fu, Y.-Q. Chang, B.-C. He, and C.-L. Wu, "Determination of Young's modulus and Poisson's ratio of thin films by X-ray methods," Thin Solid Films, vol. 544, pp.201-205, 2013.
DOI: 10.1016/j.tsf.2013.03.121
Google Scholar
[22]
A. Gouldstone, H.-J. Koh, K.-Y. Zeng, A. E. Giannakopulos, and S. Suresh, "Discrete and Continuous Deformation During Nanoindentation of Thin Films," Acta Materialia, vol. 48, pp.2277-2295, 2000.
DOI: 10.1016/s1359-6454(00)00009-4
Google Scholar
[23]
C. F. Tsang and J. Woo, "Effect of nitrogen and oxygen annealing on the morphology and hardness behavior of copper thin films", Materials Characterization, vol. 45, pp.187-194, 2000.
DOI: 10.1016/s1044-5803(00)00072-3
Google Scholar
[24]
R. W. Armstrong, H. Shin, and A. W. Ruff, "Elastic/Plastic Effects During Very Low-Load Hardness Testing of Copper," Acta metall, mater., vol. 43, pp.1037-1043, 1995.
DOI: 10.1016/0956-7151(94)00291-o
Google Scholar