Numerical Study of a Plate with a Pre-Cracked Circular Notch

Article Preview

Abstract:

In the recent years, the study of the behaviour of damaged structures has been focused on cracked components in presence of an extensive material yielding at the crack tip; under this condition, linear elastic fracture mechanics theory (LEFM) is not able to describe the real plastic zone shape and size. Within this work, an extensive numerical analysis, based on elastic plastic fracture mechanics theory (EPFM), of the plastic zone size at the tip of a Mode I pre-crack at the notch edge in a plate is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-104

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cisilino A.P. (Universidad Nacional de Mar del, Plata-CONICET, Mar del Plata, Argentina); Aliabadi M.H.; Otegui J.L. (1998): Three-dimensional boundary element formulation for the elastoplastic analysis of cracked bodies. Int J Numer Meth Eng, vol. 42, n. 2, pp.237-256.

DOI: 10.1002/(sici)1097-0207(19980530)42:2<237::aid-nme359>3.0.co;2-6

Google Scholar

[2] Caputo F.; Lamanna G.; Soprano A. (2013): On the evaluation of the plastic zone size at the crack tip. Eng Fract Mech, vol. 103, p.162–173.

DOI: 10.1016/j.engfracmech.2012.09.030

Google Scholar

[3] Leitao V.M.A. (Inst. Superior Tecnico, Lisbon, Portugal); Aliabadi M.H.; Rooke D.P. (1995): Elastoplastic simulation of fatigue crack growth. Dual boundary element formulation. Int J Fatigue, vol. 17, n. 5, pp.353-63.

DOI: 10.1016/0142-1123(95)99736-t

Google Scholar

[4] Broberg K. B. (1999): Cracks and Fracture, Academic Press.

Google Scholar

[5] Werner K. (2012): The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension, Int J Fatigue, vol. 39, p.25–31.

DOI: 10.1016/j.ijfatigue.2011.06.005

Google Scholar

[6] Caputo F.; Lamanna G.; Soprano A. (2006): Numerical Investigation on the Crack Propagation in a Flat Stiffened Panel. Key Eng Mat, vol. 324-325, pp.559-562.

DOI: 10.4028/www.scientific.net/kem.324-325.1039

Google Scholar

[7] Camas D.; Garcia-Manrique J.; Gonzalez-Herrera A. (2011): Numerical study of the thickness transition in bi-dimensional specimen cracks. Int J Fatigue, vol. 33, n. 7, p.921–928.

DOI: 10.1016/j.ijfatigue.2011.02.006

Google Scholar

[8] Lados D. A.; Apelian D. (2008): Relationships between microstructure and fatigue crack propagation paths in Al-Si-Mg cast alloys. Eng Fract Mech, vol. 75, p.821–832.

DOI: 10.1016/j.engfracmech.2007.01.027

Google Scholar

[9] Caputo F.; Lamanna G.; Lanzillo L.; Soprano A. (2014): Numerical investigation on LEFM limits under LSY conditions. Key Eng Mat, vol. 577-578, pp.381-384.

DOI: 10.4028/www.scientific.net/kem.577-578.381

Google Scholar

[10] Caputo F.; Lamanna G.; Soprano A. (2013): Residual Strength Improvement of an Aluminium Alloy Cracked Panel. The Open Mechanical Engineering Journal, vol. 7, pp.90-97.

DOI: 10.2174/1874155x20131023001

Google Scholar

[11] Caputo F.; Lamanna G.; Soprano A. (2012): Geometrical parameters influencing a hybrid mechanical coupling, Key Eng Mat, vol. 525-526, pp.161-164.

DOI: 10.4028/www.scientific.net/kem.525-526.161

Google Scholar

[12] Caputo F.; Lamanna G.; Soprano A. (2012): Effects of Tolerances on the Structural Behavior of a Bolted Hybrid Joint, Key Eng Mat, vol. 488-489, pp.565-569.

DOI: 10.4028/www.scientific.net/kem.488-489.565

Google Scholar

[13] Caputo F.; Lamanna G.; Soprano A. (2011): Numerical modeling and simulation of a bolted hybrid joint. Structural Durability and Health Monitoring, vol. 7 (4), pp.283-296.

Google Scholar

[14] Lamanna G.; Caputo F.; Soprano A. (2012): Handling of composite-metal interface in a hybrid mechanical coupling. AIP Conference Proceedings, vol. 1459, pp.353-355.

DOI: 10.1063/1.4738494

Google Scholar

[15] Caputo F.; Di Felice G.; Lamanna G.; Lefons A.; Riccio A. (2013): Numerical procedures for damage mechanisms analysis in CFRP composites. Key Eng Mat, vol. 569-570, pp.111-118.

DOI: 10.4028/www.scientific.net/kem.569-570.111

Google Scholar

[16] Leitao V. (Wessex Inst. of Technol., Portsmouth Univ., Ashurst, UK); Aliabadi M.H.; Rooke D.P. (1995): The dual boundary element formulation for elastoplastic fracture mechanics. Int J Numer Meth Eng, vol. 38, n. 2, pp.315-33.

DOI: 10.1002/nme.1620380210

Google Scholar

[17] Armentani E.; Citarella R.; Sepe R. (2011). FML Full Scale Aeronautic Panel Under Multiaxial Fatigue: Experimental Test and DBEM Simulation. Eng Fract Mech, vol. 78, pp.1717-1728.

DOI: 10.1016/j.engfracmech.2011.02.020

Google Scholar

[18] Sfantos G.K., Aliabadi M.H. (2007): Multi-scale boundary element modelling of material degradation and fracture. Comput Method Appl M, vol. 196, n. 7, pp.1310-29.

DOI: 10.1016/j.cma.2006.09.004

Google Scholar

[19] Cisilino A.P. (Universidad Natl de Mar del Plata, Mar del Plata, Argentina); Aliabadi M.H. (1999): Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Eng Fract Mech, vol. 63, n. 6, pp.713-33.

DOI: 10.1016/s0013-7944(99)00047-8

Google Scholar

[20] Citarella R.; Cricrì G.; Armentani E. (2013): Multiple crack propagation with Dual Boundary Element Method in stiffened and reinforced full scale aeronautic panels. Key Eng. Mat., vol. 560, pp.129-155.

DOI: 10.4028/www.scientific.net/kem.560.129

Google Scholar

[21] Caputo F.; Lamanna G.; Soprano A. (2011): An Analytical Formulation for the Plastic Deformation at the Tip of Short Cracks. Proceedia Engineering, vol. 10, p.2988–2993.

DOI: 10.1016/j.proeng.2011.04.495

Google Scholar

[22] Jin O.; Mall S. (2003): Effects of microstructure on short crack growth behavior of Ti–6Al–2Sn–4Zr–2Mo–0.1Si alloy. Mater Sci Eng, vol. 359, p.356–367.

DOI: 10.1016/s0921-5093(03)00377-0

Google Scholar

[23] Hussain K. (1997): Short fatigue crack behavior and analytical models: a review. Eng Fract Mech, vol. 58, p.327–54.

Google Scholar