Numerical Simulation of Modified Compact Tension Test Depicting of Experimental Measurement by ARAMIS

Article Preview

Abstract:

The paper is focused on the determination of mechanical fracture parameters from the modified compact tension test applied to the cement-based composites. The experimental measurement was carried out by means of the ARAMIS equipment. The numerical study is performed by ATENA 2D software (based on a cohesive law for crack propagation) taking the material parameters for numerical study from the standard compression test. The experimental and numerical results are discussed and compared with the help of basic fracture parameters and Load – COD (crack open displacement) diagrams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-280

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASTM International Standard E399-06 (2006) Standard test method for linear-elastic method of plane-strain fracture toughness KIC of metallic materials, pp.1-32.

DOI: 10.1520/e0399-08

Google Scholar

[2] Červenka Consulting, s. r. o. – http://www.cervenka.cz

Google Scholar

[3] T., Holušová, S., Seitl, A., Fernández-Canteli, Comparison of fracture energy values obtained from 3PB, WST and CT test configurations, Special Issue of Advanced Material Research. (2014).

DOI: 10.4028/www.scientific.net/amr.969.89

Google Scholar

[4] T., Holušová, S., Seitl, A., Fernández-Canteli, Modified compact tension test: The influence of the steel bars position, IC of Engineering Mechanics (2014)

Google Scholar

[5] B. L., Karihaloo, Fracture mechanics of concrete, Longman Scientific & Technical, New York. (1995)

Google Scholar

[6] M. K., Lee, B. I. G., Barr, An overview of the fatigue behavior of plain and fibre reinforced concrete. Cement & Concrete Composites, Vol. 26, (2004) pp.299-305.

DOI: 10.1016/s0958-9465(02)00139-7

Google Scholar

[7] D., Pryl, J., Červenka, R., Pukl, Material model for finite element modelling of fatigue crack growth in concrete. Procedia engineering, Vol. 2, (2010) pp.203-212.

DOI: 10.1016/j.proeng.2010.03.022

Google Scholar

[8] RILEM Report 5 Fracture Mechanics Test Methods for Concrete (S. P. Shah & A. Carpinteri eds.), Chapman and Hall, London (1991).

Google Scholar

[9] RILEM TC-50 FMC Recommendation Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams, Materials & Structures (1985).

DOI: 10.1007/bf02498757

Google Scholar

[10] S., Seitl, H., Šimonová, Z., Keršner, A., Fernández-Canteli, Evaluation of concrete fatigue measurement using standard and non-linear regression model. Applied Mechanics and Materials, Vol. 121−126, (2012) pp.2726-2729.

DOI: 10.4028/www.scientific.net/amm.121-126.2726

Google Scholar

[11] D., Pryl, J., Mikolaskova, R., Pukl, Modeling fatigue damage of concrete, Key Engineering Materials, V. 577-578, (2014) pp.385-388

DOI: 10.4028/www.scientific.net/kem.577-578.385

Google Scholar

[12] H., Šimonová, B., Kucharczyková, I., Havlíková, S., Seitl, Z., Keršner, Complex evaluation of fatigue tests results of plain C30/37 and C45/45 class concrete specimens, Key Engineering Materials, V. 592-593, (2014) pp.801-804

DOI: 10.4028/www.scientific.net/kem.592-593.801

Google Scholar