Key Engineering Materials
Vol. 634
Vol. 634
Key Engineering Materials
Vol. 633
Vol. 633
Key Engineering Materials
Vol. 632
Vol. 632
Key Engineering Materials
Vol. 631
Vol. 631
Key Engineering Materials
Vols. 629-630
Vols. 629-630
Key Engineering Materials
Vol. 628
Vol. 628
Key Engineering Materials
Vol. 627
Vol. 627
Key Engineering Materials
Vol. 626
Vol. 626
Key Engineering Materials
Vol. 625
Vol. 625
Key Engineering Materials
Vol. 624
Vol. 624
Key Engineering Materials
Vols. 622-623
Vols. 622-623
Key Engineering Materials
Vol. 621
Vol. 621
Key Engineering Materials
Vol. 620
Vol. 620
Key Engineering Materials Vol. 627
Paper Title Page
Abstract: The work studies and compares different approaches suitable for predictions of the crack deflection (bifurcation) in ceramic laminates containing thin layers under high residual stresses and discuss a suitability and limits of using of the asymptotic analysis for such problems. The thickness of the thin compressive layers where the crack deflection occurs is only one order higher than the crack extension lengths considered within the solution. A purely FEM based calculation of the energy and stress conditions, necessary for the crack propagation, serves as the reference solution to the problem. The asymptotic analysis is used after for calculations of the same quantities (especially of energy release rate – ERR). This concept enables semi-analytical calculations of ERR or changes in potential energy induced by the crack extensions of different lengths and directions. Such approach can save a large amount of simulations and time compared with the pure FEM based calculations. It was found that the asymptotic analysis provides a good agreement for investigations of the crack increments enough far from the adjacent interfaces but for longer extensions (of length above 1/5-1/10 of the distance from the interface) starts more significantly to deviate from the correct solution. Involvement of the higher order terms in the asymptotic solution or other improvement of the model is thus advisable.
237
Abstract: The microstructure of welded joints differs significantly from that of the base material, what changes their mechanical properties and influences fatigue life. The aim of this work was the investigation of the local deformation field within a butt joint made of 10 mm thick structural steel S355. However, a direct sampling even of the weld metal was impossible due to small dimensions of butt joints. Therefore, the following procedure was utilized in order to manufacture big samples of the microstructure identical to that of the local weldment areas.A geometrical model of the welded structure describing the relevant areas e.g. weld metal, heat-affected zone was established. It was based on the results of the metallographic investigations, hardness mapping and electron-probe-micro-analysis of the local chemical composition. The welding process was numerically simulated using SYSWELD program to estimate the time-temperature-transition (TTT) curves for each identified area. The parameters of the heat input source were calibrated. Afterwards, the material of the defined chemical composition was heat-treated according to the TTT curves. For the validation purpose the heat-treated work pieces were evaluated in terms of microstructure and hardness distribution. Finally, the up-scaled samples of the respective bulk microstructure were manufactured and investigated in monotonic tests.
241
Abstract: The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. This study proposed 3 reinforcements that are increased to bond capacity using lateral bar, the structure test is performed. As performed test result, because slabs not keep enough bond length, slab is failed before shear reinforcement's yield strength duo to anchorage of slip. According to result, FEM analyzed an effect of slab thickness and concrete compressive. The study suggests shear strength formula that possible a positive shear reinforcement in slab-column connection.
245
Abstract: Mutual pounding between structures during earthquakes may cause serious structural damage. The aim of this paper is to show the results of a shaking table experimental study focused on pounding between structures in series under several earthquake excitations. The experiments were performed using three tower models with different configurations and different gap distances between them. In the first stage of the study, one rigid tower was installed between two flexible structures, while later on, the flexible tower was located between two rigid structures. The results of the study show that pounding observed during damaging earthquakes might affect the behaviour of structures significantly. It was observed that the rigid towers are more influenced by pounding than the flexible structures. Moreover, the optimal gap size was found to be either the distance which prevents pounding (and therefore prevents from damage) or the zero gap.
249
Abstract: Recently, many countries are promoting the collection, the reproduction and the use of consumer goods;aluminum cans, PET bottles, and so on. On the other hand, the reproduction of the glass bottles is not so active excluding use as a returnable bottle, because the recycle cost is high. The glass bottles are fractured by the small fragment for reproduction. The small crushing fragments are called ‘Cullet’. The cullet is melted and molded again as glassware. The surface area is enlarged by making the bottle cullet, and it is possible to melt these efficiently. As a result, it becomes possible to shorten the time to melt the glass bottle and reduce a consumption of the fuel oil. The reasons with not active recycling of the glass bottle are that large-scale crushing equipment is required and it takes a lot of time and cost. This study proposed a new recycling technique for fracturing the glass bottle by using an underwater shockwave by explosive and electric pulse. The shock wave pressures produced by the explosive and the electric pulse energy were measured and the optimum crushing conditions were discussed.
253
Abstract: The purpose of this study is development of gun-bullet protection board. In this experiment, the air gun’s performance and the effective bullet supporting sabot’s shape were evaluated. The launched gun-bullet velocity was measured by high speed video method.
257
Abstract: In this study, we tried Design / Manufacturing system by using optimum design and rapid manufacturing for Composite Ankle Foot Orthosis. As a result, we found that the manufacturing process is effective on the cost and the design process has possibility to be optimum shape. There are more than one billion people who have a disability in many countries. Some of the people have foot drop and clubfoot. The disabilities become difficult for the people to gait. They use AFO for supporting their gait. However existing manufacturing methods of AFO are expensive because they contain a process to manufacture negative model for manufacturing positive model needed to forming AFO. This process reduces dimension accuracy of the positive model. The time for modification of the positive model becomes long. Our manufacturing process fabricates the positive model directly by using hand-held 3D Scanner and CAD/CAM system. Therefore negative model is not needed and the cost becomes lower. Instead of the reduced manufacturing time, we submitted optimum design with scanned AFO model on flexure and with simplified model on strength.
261
Abstract: In order to investigate fatigue characteristics of nonferrous bolts at elevated temperature, fatigue tests of bolted joints which were tightened with three kinds of nonferrous bolts were been conducted at 100°C atmosphere. The test bolts were made of A5056 aluminum alloy and AZ31 and AZX912 magnesium alloy. Creep tests of the bolts at 100°C atmosphere were also conducted. The results showed that the fatigue limit of A5056 bolt was the highest of all regardless of the ambient temperature. The fatigue limits of AZ31 bolt and AZX912 bolt also were a half of the fatigue limit of A5056 bolt at both ambient temperature. Bolt clamping force losses due to creep deformation were observed for all bolts during fatigue tests at elevated temperature. Hence as additional tests, the creep tests which was controlled either the tensile force or the displacements respectively were conducted. As the results it was seen that the clamping force losses for all bolts were remarkably large although the each creep deformation was different for each bolt material. Therefore the results indicates that we have to pay attention to the clamping force reduction due to creep deformation if we use the nonferrous bolt in high temperature.
265
Abstract: Mechanical and electric loads are considered for 2-d crack problems in conducting piezoelectric materials. The electric displacement in conducting piezoelectric materials is influenced by the electron density and it is coupled with the electric current. The coupled governing partial differential equations (PDE) for stresses, electric displacement field and current are satisfied in a local weak-form on small fictitious subdomains. Nodal points are spread on the analyzed domain and each node is surrounded by a small circle for simplicity. Local integral equations are derived for a unit function as the test function on circular subdomains. All field quantities are approximated by the moving least-squares (MLS) scheme.
269
Abstract: Creation of an automatic utility to determine the values of coefficients of higher order terms of Williams power series by usage of over-deterministic method applied to results of finite element analysis is a main goal of this research. The developed procedure based on the support of Java programming language considerably simplifies analyses on optimization of selection of FE nodal results for improvement of accuracy of the near-crack-tip fields’ approximation using Williams series.
273