Deep Oxidative Desulfurization of Dibenzothiophene by Functional Tungsten-Containing Mesoporoussilica from Polyoxometalate-Based Salts

Article Preview

Abstract:

Tungsten-containing functional mesoporousW-SiO2 have been successfully synthesized by an one-pot and facile room-temperature procedure. These materials presented a high dispersion of tungsten species and excellent catalytic activity on the removal of sulfur compounds without any organic solvents as extractants. The catalytic performance on sulfur compounds was investigated in detail. After recycling for 8 times, the removal of the oxidation desulfurization system could still reach 92.0%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Esser, P. Wasserscheid, A. Jess, Deep desulfurization of oil refinery streams by extraction with ionic liquids, Green Chem., 6 (2004) 316-322.

DOI: 10.1039/b407028c

Google Scholar

[2] I.V. Babich, J.A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: A review, Fuel, 82 (2003) 607-631.

DOI: 10.1016/s0016-2361(02)00324-1

Google Scholar

[3] C. Song, X.L. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal. B: Environ., 41 (2003) 207-238.

DOI: 10.1016/s0926-3373(02)00212-6

Google Scholar

[4] A. Bosmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Deep desulfurization of diesel fuel by extraction with ionic liquids, Chem. Commun., (2001) 2494-2495.

DOI: 10.1039/b108411a

Google Scholar

[5] J.M. Kwon, J.H. Moon, Y.S. Bae, D.G. Lee, H.C. Sohn, C.H. Lee, Adsorptive desulfurization and denitrogenation of refinery fuels using mesoporous silica adsorbents, ChemSusChem, 1 (2008) 307-309.

DOI: 10.1002/cssc.200700011

Google Scholar

[6] M. Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao, Q. Wang, Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids, Chem. Eng. J., 220 (2013) 328-336.

DOI: 10.1016/j.cej.2012.11.138

Google Scholar

[7] Y.G. Li, W.L. Li, H.S. Gao, J.M. Xing, H.Z. Liu, Integration of flocculation and adsorptive immobilization of Pseudomonas delafieldii R-8 for diesel oil biodesulfurization, J. Chem. Technol. Biotechnol., 86 (2011) 246-250.

DOI: 10.1002/jctb.2510

Google Scholar

[8] Y.X. Qiao, Z.S. Hou, Polyoxometalate-Based Solid and Liquid Salts for Catalysis, Curr. Org. Chem., 13 (2009) 1347-1365.

DOI: 10.2174/138527209789055144

Google Scholar

[9] R. Wang, F.L. Yu, G.F. Zhang, H.X. Zhao, Performance evaluation of the carbon nanotubes supported Cs2. 5H0. 5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene, Catal. Today, 150 (2010) 37-41.

DOI: 10.1016/j.cattod.2009.10.001

Google Scholar

[10] J.H. Xu, S. Zhao, W. Chen, M. Wang, Y.F. Song, Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36 ·32H2O in [bmim]BF4 at room temperature, Chem. Eur. J., 18 (2012) 4775-4781.

DOI: 10.1002/chem.201102754

Google Scholar

[11] E. Rafiee, S. Eavani, Organic-inorganic polyoxometalate based salts as thermoregulated phase-separable catalysts for selective oxidation of thioethers and thiophenes and deep desulfurization of model fuels, J. Mol. Catal. A: Chem., 380 (2013).

DOI: 10.1016/j.molcata.2013.09.009

Google Scholar

[12] H. Zhao, L. Zeng, Y. Li, C. Liu, B. Hou, D. Wu, N. Feng, A. Zheng, X. Xie, S. Su, N. Yu, Polyoxometalate-based ionic complexes immobilized in mesoporous silicas prepared via a one-pot procedure: Efficient and reusable catalysts for H2O2-mediated alcohol oxidations in aqueous media, Micropor. Mesopor. Mater., 172 (2013).

DOI: 10.1016/j.micromeso.2012.12.040

Google Scholar

[13] H. Chen, W. -L. Dai, J. -F. Deng, K. Fan, Novel heterogeneous W-Doped MCM-41 catalyst for highly selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2, Catal. Lett., 81 (2002) 131-136.

Google Scholar