Preliminary Results of FeMnSi+Si(PLD) Alloy Degradation

Article Preview

Abstract:

In this study, nano-silicon (Si) thin films were deposited on biodegradable Fe–1.5Mn–1Si substrate by pulsed laser deposition (PLD) method. Biodegradable metallic materials represent a good solution in implantology field based on the elimination of the second surgical operation required for the extraction of the material. Also, using biodegradable materials medical complications between the metallic implant and the human body that might appear during the recovery period are excluded. In this sense we propose a metallic material based on iron with a longer degradation period compared to Mg-Ca based materials. Scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX) were use to analyze the implant material surface before and after Si thin film deposition and before and after implantation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kirkland, N. Birbilis, Magnesium Biomaterials: Design, Testing and Best Practice. New York, Springer, (2013).

Google Scholar

[2] N. T. Kirkland, Magnesium biomaterials: Past, present and future, Corrosion Engineering, Science and Technology 47 (2012) 322-328.

DOI: 10.1179/1743278212y.0000000034

Google Scholar

[3] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf,. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits, Heart, 86 (2001).

DOI: 10.1136/heart.86.5.563

Google Scholar

[4] D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomaterialia, 7 (2011) 3515-3522.

DOI: 10.1016/j.actbio.2011.05.008

Google Scholar

[5] Biotronik BIOTRONIK's Bioabsorbable Magnesium Scaffold Continues to Show Strong Results at 12 Months with Uncompromised Device Usability,. (2013).

Google Scholar

[6] F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, (7) (2006) 1013-1018.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[7] O.G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, C. Focsa, Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films, (article in press), Applied Physics A, (2014).

DOI: 10.1007/s00339-014-8359-6

Google Scholar

[8] R. H. Cimpoeşu, G. O. Pompilian, C. Baciu, N. Cimpoeşu, C. Nejneru, M. Agop, S. Gurlui, C. Focşa, Pulsed laser deposition of poly (L-Lactide) acid on nitinol substrate, Optoelectronics and Advan. Mater. -Rapid Commun., 4, (2010), 2148-2153.

Google Scholar

[9] N. Cimpoeșu, A. Ursanu, S. Stanciu, R. Cimpoeșu, B. Constantin, C. Paraschiv, S. O. Gurlui, Preliminary Results of Copper Based Shape Memory Alloys Analysis used for MEMS Applications, Applied Mechanics and Materials, 371 (2013) 368-372.

DOI: 10.4028/www.scientific.net/amm.371.368

Google Scholar

[10] G. Vitel, A.L. Paraschiv, M.G. Suru, N. Cimpoeşu, L. -G. Bujoreanu, Tempering effects in a normalized hot forged Cu-Zn-Al shape memory alloy, Optoelectronics and Advanced Materials, Rapid Communications 6 (2012) 339-342.

Google Scholar

[11] D. Mareci, N. Cimpoesu, M. I. Popa, Electrochemical and SEM characterization of NiTi alloy coated with chitosan by PLD technique, Materials and Corrosion, 63, (2012) 176-180.

DOI: 10.1002/maco.201206501

Google Scholar

[12] P.S. Gomes, J.D. Santos, M.H. Fernandes, Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and Bonelike Acta Biomaterialia 4 (2008) 630–637.

DOI: 10.1016/j.actbio.2007.12.006

Google Scholar