Sonication in Orthopedics for the Diagnosis of Implant-Associated Infections

Article Preview

Abstract:

Introduction. Implant-associated infections in orthopedics represent a major challenge for diagnosis and treatment. Sonication is an alternative method for the diagnosis in prosthetic infections, with a higher sensitivity compared to the conventional periprosthetic cultures. Our aim was to compare the results of conventional culturing and sonication process in per prosthetic joint infections. Material and method. We followed up in a period of 7 years (2007-2014) patients who underwent to total joint arthroplasty, and fracture fixation with internal fixation in the University Emergency Hospital of Bucharest. Conventional and sonication fluid culturing was performed in order to compare the results of it. In 3 cases the cultures after sonication was negative in 9 cases Methicilin resistant (MR) staphylococcus was isolated. Sonication Results Our study involved 34 patients with an average age of 63.08 ±10.65SD. In 3 cases the cultures after sonication was negative in 9 cases Methicilin resistant (MR) staphylococcus was isolated, in 1 case Serratia Marcescens and another case with Staphylococcus Warmei. Discussion Our study underlines the importance of the etiological diagnosis with the application of sonication Coclusions The sonication technique is simple and can be performed in the most of microbiological laboratories. Sonication has the benefit of the etiological diagnosis either in mono-microbial and poli-microbial implant-associated infections, with a higher sensitivity than standard culturing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lehmann L.E., Hunfeld K.P., Emrich T., Haberhausen G., Wissing H., Hoeft A., Stuber F., A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples, Med. Microbiol. Immunol., 197: 313-324, (2008).

DOI: 10.1007/s00430-007-0063-0

Google Scholar

[2] Mariconda M., Ascione T., Balato G., Rotondo R., Smeraglia F., Costa G.G., Conte M., Sonication of antibiotic-loaded cement spacers in a two-stage revision protocol for infected joint arthroplasty, 14: 193, (2008).

DOI: 10.1186/1471-2474-14-193

Google Scholar

[3] Trampuz A., Piper K.E., Jacobson M.J., Hanssen A.D., Unni K.K., Osmon D.R., Mandrekar J.N., Cockerill F.R., Steckelberg J.M., Greenleaf J.F., Patel R., Sonication of Removed Hip and Knee Prostheses for Diagnosis of Infection, D. N Engl J Med, 357: 654-663, (2007).

DOI: 10.1056/nejmoa061588

Google Scholar

[4] Panousis K., Grigoris P., Butcher I., Rana B., Reilly J.H., Hamblen D.L., Poor predictive value of broad-range PCR for the detection of arthroplasty infection in 92 cases , Acta Orthop. 76: 341-346, (2005).

DOI: 10.1080/00016470510030805

Google Scholar

[5] Achermann Y, Vogt M, Leunig M, Wüst J, Trampuz A. Improved Diagnosis of Periprosthetic Joint Infection by Multiplex PCR of Sonication Fluid from Removed Implants, February 2010, J. Clin. Microbiol. April 2010 vol. 48; 4: 1208-1214.

DOI: 10.1128/jcm.00006-10

Google Scholar

[6] De Man, F. H., P. Graber, M. Luem, W. Zimmerli, P. E. Ochsner, and P. Sendi. 2009. Broad-range PCR in selected episodes of prosthetic joint infection, Infection 37: 292-294.

DOI: 10.1007/s15010-008-8246-1

Google Scholar

[7] Vandercam, B., S. Jeumont, O. Cornu, J. C. Yombi, F. Lecouvet, P. Lefevre, L. M. Irenge, and J. L. Gala. 2008. Amplification-based DNA analysis in the diagnosis of prosthetic joint infection.J. Mol. Diagn. 10: 537-543.

DOI: 10.2353/jmoldx.2008.070137

Google Scholar

[8] Rochford E T J., Richards R.G., Moriarty T F. Influence of material on the development of device-associated infections. Clincal Microbiology and infection 2012, 18: 1162-1167.

DOI: 10.1111/j.1469-0691.2012.04002.x

Google Scholar

[9] Antoniac I., Biologically responsive biomaterials for tissue engineering, Ed. Springer, ISBN 978-1-4614-4327-8, (2013).

Google Scholar

[10] Togan V., Ionita G., Antoniac I., Corrosion Behavior of Ti6Al4V Coated with SiOx by PECVD Technology, Key Engineering Materials, vol. 583, pp.22-27, (2014).

DOI: 10.4028/www.scientific.net/kem.583.22

Google Scholar

[11] Ionescu R., Cristescu I., Dinu M., Saban R., Antoniac I., Vilcioiu D., Clinical, Biomechanical and Biomaterials Approach in the Case of Fracture Repair Using Different Systems Type Plate-Screw, Key Engineering Materials, vol. 583, pp.150-154, (2014).

DOI: 10.4028/www.scientific.net/kem.583.150

Google Scholar

[12] Bane M., Miculescu F., Blajan A.I., Dinu M., Antoniac I., Failure analysis of some retrieved orthopedic implants based on materials characterization, Solid State Phenomena, vol. 188, p, 114-117, (2012).

DOI: 10.4028/www.scientific.net/ssp.188.114

Google Scholar

[13] Antoniac V., Necsulescu A., Cosmeleata G., Biomaterials and shape memory alloys, in Materials Science and Engineering Handbook (in romanian), vol., pp.1463-1494, Ed. AGIR, 2009, ISBN 978-973-720-261-1.

Google Scholar

[14] Donlan R.M., New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res 437: 12-19, (2005).

Google Scholar

[15] Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004; 351: 1645-54.

DOI: 10.1056/nejmra040181

Google Scholar

[16] Trampuz A., Osmon DR, Hanssen AD, Steckelberg JM, Patel R. Molecular and antibiofilm approaches to prosthetic joint infection. Clin Orthop Relat Res. 2003 Sep; (414): 69-88.

DOI: 10.1097/01.blo.0000087324.60612.93

Google Scholar

[17] Bernard L, Lubbeke A, Stern R, et al. Value of preoperative investigations in diagnosing prosthetic joint infection: retrospective cohort study and literature review. Scand J Infect Dis 2004; 36: 410-416.

DOI: 10.1080/00365540410015240

Google Scholar

[18] Sperling, J. W., T. K. Kozak, A. D. Hanssen, and R. H. Cofield. Infection after shoulder arthroplasty. Clin. Orthop. Relat. Res. . 2001; 382: 206–216.

DOI: 10.1097/00003086-200101000-00028

Google Scholar

[19] Gristina, A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987 237: 1588–1595.

DOI: 10.1126/science.3629258

Google Scholar

[20] Del Pozo, J. L., and R. Patel. Clinical practice. Infection associated with prosthetic joints. N. Engl. J. Med. 2009. 361: 787–794.

DOI: 10.1056/nejmcp0905029

Google Scholar

[21] Sendi P, Frei R, Maurer T B, Trampuz A, Zimmerli W, Graber P Escherichia coli Variants in Periprosthetic Joint Infection: Diagnostic Challenges with Sessile Bacteria and Sonication, J Clin Microbiol. 2010 May; 48(5): 1720–1725.

DOI: 10.1128/jcm.01562-09

Google Scholar

[22] Costerton, W., R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich. 2003. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 112: 1466-1477.

DOI: 10.1172/jci200320365

Google Scholar

[23] Van Houdt, R., and C. W. Michiels. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 2005. 156: 626-633.

DOI: 10.1016/j.resmic.2005.02.005

Google Scholar

[24] Ashby, M. J., J. E. Neale, S. J. Knott, and I. A. Critchley. Effect of antibiotics on non- growing planktonic cells and biofilms of Escherichia coli. J. Antimicrob. Chemother. 1994. 33: 443-452.

DOI: 10.1093/jac/33.3.443

Google Scholar

[25] Maconda M, Ascione T, Balato G, Rotondo R Smeraglia F, Costa GG, and Conte M, Sonication of antibiotic-loaded cement spacers in a two-stage revision protocol for infected joint arthroplasty BMC Musculoskelet Disord. 2013; 14: 193.

DOI: 10.1186/1471-2474-14-193

Google Scholar