Measuring Systems for Sheet-Bulk Metal Forming

Article Preview

Abstract:

In order to fulfil today’s demands on fast, efficient and sustainable production processes the sheet-bulk metal forming is being developed as a new forming technology within the scope of the SFB/Transregio 73. Characteristically for the sheet bulk metal forming is a three dimensional material flow, which allows for extensive freedom in the design process. To ensure maintaining all the advantages, provided by sheet-bulk metal forming, new inspection concepts for the produced parts as well as for the forming tools have to be developed. For a production-related inspection of produced parts a multi-sensor fringe projection system is under development, which will be employed to detect deviations of features’ form and size. With its sensors of varying measuring range and resolution a feature adapted inspection is possible. Additionally an optical fibre sensor is projected to detect small parts of interest in a very high resolution to enhance the possibilities of the multiscale multi-sensor system. A newly developed endoscopic fringe projection system is used to inspect parts that are out of reach for common optical measuring systems such as the forming tool of the process. This allows for a continuous measurement of tool features and thus the detection of slow growing wear. Challenging for measurement tasks in the sheet-bulk metal forming process are not only the complex geometries but also the harsh environmental conditions and especially for the parts’ inspection, the different surface parameters. In this article the surface parameters of the some sheet-bulk metal formed parts and forming tools will be explained, followed by a description of the different measuring systems. Finally an exemplary evaluation of the influence of the surface properties on an optical measuring system will be shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

291-298

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Merklein, J. M. Allwood, B. -A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A. E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, in: Annals of the CIRP, 2 (2012) 61, 725-745.

DOI: 10.1016/j.cirp.2012.05.007

Google Scholar

[2] M. Schaper, Y. Lizunkova, M. Vucetic, T. Cahyono, H. Hetzner, S. Opel, T. Schneider, J. Koch, B. Plugge, Sheet-bulk Metal Forming a New Process for the Production of Sheet Metal Parts with Functional Components, in: Metallurgical and Mining Industry, 3(2011).

DOI: 10.1007/s12289-010-0778-0

Google Scholar

[3] C. Ohrt, W. Hartmann, M. Kästner, A. Weckenmann, T. Hausotte, E. Reithmeier, Holistic measurement in the sheet-bulk metal forming process with fringe projection, in: scientific net (Hrsg. ): Key Engineering Materials KEM Vol. 504 (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.1005

Google Scholar

[4] J. Weickmann, A. Weckenmann, P. -F. Brenner, Automatic, Task-Sensitive and Simulation-Based Optimization of Fringe Projection Measurements, in: scientific net (Hrsg. ): Key Engineering Materials KEM Vol. 437 (2010), 439-443.

DOI: 10.4028/www.scientific.net/kem.437.439

Google Scholar

[5] A. Loderer, B. Galovskyi, W. Hartmann, T. Hausotte, Qualifying Measuring Systems by using Six Sigma, in: 11th International Symposium on Measurement and Quality Control (2013).

DOI: 10.4028/www.scientific.net/kem.637.37

Google Scholar

[6] Ohrt, C., Development of a Measuring Endoscope for the In-Line Quality Control of Filigree Form Elements in Forming Production Lines, TEWISS, 2014, ISBN 978-3944586410.

Google Scholar

[7] G. Sansoni, S. Corini, S. Lazzari, R. Rodella, F. Docchio, Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications, Appl. Opt. 36, 4463-4472 (1997).

DOI: 10.1364/ao.36.004463

Google Scholar

[8] M. K. Kalms, W. Osten, W. P. O. Jueptner, Inverse projected-fringe technique with automatic pattern adaption using a programmable spatial light modulator, Proc. SPIE 3407, International Conference on Applied Optical Metrology, 483 (September 29, 1998), doi: 10. 1117/12. 323360.

DOI: 10.1117/12.323360

Google Scholar

[9] G. Berndt, E. Hultzsch, H. Weinhild, Funktionstoleranz und Meßunsicherheit, in: Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 17(1968) 2, 465-471.

Google Scholar

[10] R. Schmitt, N. König, G. F. Mallmann, F. Depiereux, Fibre-optical measurement of form deviations of rotation-symmetric parts. Measurement, 43 (2010) 5, 714-718.

DOI: 10.1016/j.measurement.2010.01.014

Google Scholar

[11] C. A. Schuler, Erweiterung der Einsatzgrenzen von Sensoren für die Mikro- und Nanomesstechnik durch dynamische Sensornachführung unter Anwendung nanometeraufgelöster elektrischer Nahfeldwechselwirkung, Aachen: Shaker, 2014. - ISBN 978-3-8440-2299-5.

Google Scholar

[12] E. Manske, G. Jäger, T. Hausotte, R. Füßl, Recent developments and challenges of nanopositioning and nanomeasuring technology, in: Measurement Science and Technology, 23 (2012) 7, 074001.

DOI: 10.1088/0957-0233/23/7/074001

Google Scholar

[13] G. Binnig, D. P. E. Smith, Single‐tube three‐dimensional scanner for scanning tunneling microscopy, in: Review of Scientific Instruments 57. 8 (1986): 1688-1689.

DOI: 10.1063/1.1139196

Google Scholar